

VICAR Quick-Start Guide

Version 2.0

2016-05-22

Prepared by:

Walter Bunch

Robert Deen, VICAR Cognizant Engineer

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California

Copyright 2016 California Institute of Technology. Government sponsorship
acknowledged.

VICAR Quick-Start Guide

 2

1. Introduction... 4
1.1. What VICAR Is ... 4
1.2. What VICAR Isn’t .. 4
1.3. What this Guide Is .. 5
1.4. Brief History of VICAR .. 5
1.5. VICAR File Format .. 6
1.6. Users of VICAR... 7

1.6.1. Historic ... 7
1.6.2. Current .. 7

1.7. Components of VICAR in this Release .. 8
1.8. Motivation for Release ... 8
1.9. Obtaining VICAR ... 9
1.10. Supported Platforms ... 10

2. Getting Started with VICAR ... 11
2.1. Documentation Status .. 11

2.1.1. General Guides ... 11
2.1.2. VICAR User’s Guide .. 11
2.1.3. VICAR File Format .. 11
2.1.4. VICAR Run-Time Library Reference Manual ... 12
2.1.5. VICAR Porting Guide ... 12
2.1.6. Building and Delivering VICAR Applications .. 13
2.1.7. Application Program Help (PDF files) .. 13

2.2. Building and/or Installing VICAR.. 14
2.3. Starting up VICAR ... 14
2.4. Simple Aliveness Test ... 15
2.5. Shell VICAR Syntax ... 18

2.5.1. Pathname .. 18
2.5.2. Subcommands .. 18
2.5.3. Positional and key=value Parameters .. 18
2.5.4. Keywords .. 19
2.5.5. Multivalued Parameters .. 19
2.5.6. Strings and Quoting ... 20
2.5.7. Output Parameters .. 20
2.5.8. TCL Procedures ... 21

2.6. Xvd Image Display.. 21
2.7. File Format Conversion (Transcoder) ... 23
2.8. Most Important General VICAR Programs.. 24

2.8.1. F2 .. 24
2.8.2. LABEL ... 25
2.8.3. CFORM ... 25
2.8.4. DIFPIC .. 25
2.8.5. VICCUB ... 25
2.8.6. STRETCH ... 25
2.8.7. GEN .. 25
2.8.8. SIZE .. 25
2.8.9. FLOT .. 25
2.8.10. HIST ... 25
2.8.11. MAXMIN .. 26
2.8.12. GETLAB.. 26

VICAR Quick-Start Guide

 3

2.9. Image Based Information System (IBIS) ... 26

3. Getting Started with Development ... 27
3.1. Building a Program.. 27
3.2. Java ... 27

4. Use Cases - Doing Something with VICAR ... 29
4.1. Landsat Mosaic ... 29
4.2. SRTM Mosaic .. 33
4.3. Neptune's Satellite Proteus (1989N1) ... 37

5. List of Programs ... 41
5.1. Categories ... 41

5.1.1. Utilities... 41
5.1.2. Displaying Images, Text, and Graphics... 41
5.1.3. Generic Tools .. 41
5.1.4. Image Registration and Mosaicking .. 42
5.1.5. Calibrating the Camera and Target .. 42
5.1.6. Miscellaneous ... 42
5.1.7. Multispectral Data .. 42
5.1.8. Graphics and Tabular Data .. 42
5.1.9. Project-Specific Programs .. 42

5.2. Program Listing .. 43

6. Acronym List .. 54

7. References .. 56

VICAR Quick-Start Guide

 4

1. Introduction

1.1. What VICAR Is

VICAR stands for Video Image Communication And Retrieval. It is an image processing system
developed by the (Multimission) Image Processing Lab (IPL or MIPL), at NASA’s Jet Propulsion
Laboratory (JPL).

VICAR has its origins in the mid-1960’s (see the brief history, below), which makes it quite
probably the oldest continuously used image processing system in the world.

VICAR was developed for use with JPL’s planetary missions, from Surveyor in 1966 up to the
present day. The majority of JPL’s planetary missions that have cameras use VICAR in some way.
This continues to this day, with Mars 2020 expected to make heavy use of it, just as MER, MSL,
Phoenix, and Insight are.

Fundamentally, VICAR is a command-line-oriented system. It consists of about 350 application
programs that run the gamut from trivial to highly complex. The power of VICAR comes in the
way these applications can be combined together in scripts to do more complicated processing in
a systematic way.

Another critical component of VICAR is its handling of metadata, or labels. Labels are pieces of
metadata, in KEYWORD=VALUE format, that are attached to the image. They describe things
about the image, such as the conditions under which the image was taken (e.g. temperature,
pointing, mapping parameters) and the processing history of the image. These labels are first-
class citizens in VICAR; they are almost as important as the image itself! They are what make a
VICAR file a scientifically useful image, instead of just a pretty picture.

1.2. What VICAR Isn’t

To be blunt, VICAR is not Photoshop. Although there are some GUI (Graphical User Interface)
elements, notably the "xvd" display program, fundamentally VICAR is a command-line system, not
a GUI. It does not have the glitz or interactivity of Photoshop. It is not anywhere near as easy to
use.

If you want to make an image pretty, or enhance it in standard ways, use Photoshop. It is far
better suited to experimentation with imaging techniques, and excels at improving how images
look.

However, if you want to radiometrically or photometrically correct an image of a moon of Jupiter,
or create a map of the surface, or do a variety of things that require maintaining precise scientific
calibration of the data, VICAR is a better bet. It is designed specifically for this kind of work.
VICAR is also well suited to systematic, production work, where you do the same thing to a whole
set of images.

VICAR is also not ISIS (Integrated Software for Imagers and Spectrometers). ISIS is a package from
USGS (US Geological Survey) that shares a lot of common roots with VICAR. While there are some

VICAR Quick-Start Guide

 5

similarities, there are also differences - VICAR is better at some things, ISIS is better at others. If
you want to work with Voyager or Galileo data, for example, use VICAR. One thing ISIS is very
much better at is documentation - ISIS puts a priority on it, while VICAR has not (as discussed
more below). You will have to put more effort into learning and using VICAR. We hope though
that the effort will be rewarding, and worthwhile.

1.3. What this Guide Is

This Guide is intended to be an up-to-date, quick-start document that gets you pointed in the right
direction. It is not a full-on user’s guide.

Frankly, the system-level documentation for VICAR stinks. Most of it has not been updated in
decades. While much of it is still accurate as far as it goes, there are a lot of newer features (for
example, shell-VICAR) that are not discussed in the documentation. This Guide will try to plug
those holes, pointing at what’s good - or not - in the older documents while describing some of the
newer features.

As bad as the system-level documentation is, the individual program documentation is generally
pretty good, describing in detail what the programs do and how they do it.

1.4. Brief History of VICAR

Note to historians: the history in this section has been pulled together from several, sometimes
contradictory sources. We have attempted to weave a coherent narrative but this should not be
considered authoritative; go to the primary sources instead.

The seeds for image processing at JPL were sown in the early 1960’s. Bob Nathan proposed image
processing at JPL in 1962/3. By 1964/5, Fred Billingsley (the first person to publish using the
word "pixel") and Roger Brandt had developed a Video Film Converter (digitizer), and Howard
Frieden developed code to process Ranger data on an IBM 7094.

The first published reference to VICAR came in 1966. VICAR was written by Stan Bressler,
Frieden, Nathan, Billingsley et al, for IBM 360 computers, based on experience with the previous
work. The first documented use of VICAR was for Surveyor, again in 1966. The JPL Image
Processing Lab was also formed at this time.

We believe, but cannot prove, that this makes VICAR the oldest continuously used image
processing system in the world. We will celebrate its 50th birthday in 2016.

The first "Open Source" delivery of VICAR was in 1971. This was to an outfit called COSMIC, which
was the clearinghouse for NASA software at the time. VICAR continued to be delivered in source
code form until the mid-1990’s, when growing concerns over ITAR made it harder to justify source
code release.

The 1970’s saw the introduction of interactive processing (on IBM/TSO), as well as the
development of IBIS (Image-Based Information System), which is still a part of VICAR.

VICAR Quick-Start Guide

 6

1984 was an important year in VICAR history. In that year VICAR was converted from IBM 360
computers, to VAX/VMS. The VICAR core was redesigned to support the VMS conversion.
However, much of the application code survived the transmission, providing continuity of the code
base. In addition, the VICAR file format was redesigned to its current state (this is sometimes
called VICAR2, but more commonly the 2 is dropped).

This transition also saw adoption of the Transportable Applications Executive (TAE) from NASA-
Goddard as the command-line parser, scripting language, and batch processor. (ISIS also adopted
TAE and used it for several decades). TAE is still included as part of VICAR, although its use has
declined precipitously in recent years.

Finally, IPL was reorganized to become the Multimission Image Processing Lab (MIPL), in
recognition of the increasing number of missions supported by VICAR.

The early 1990’s saw VICAR ported to Unix. Unlike the VMS transition, which was a hard-cut from
IBM to VMS, this was a port, with both VMS and Unix being supported simultaneously for a long
time. Nearly 20 flavors of Unix were supported at various levels in the 1990’s and early 2000’s; as
the industry consolidated around Linux most of these were dropped (currently Linux, Solaris, and
Mac OS X are the only supported operating systems).

The early 1990’s also saw the introduction of "shell-VICAR", which allowed VICAR programs to be
run directly from the Unix command line. This reduced reliance on TAE and opened up the entire
world of Unix scripting languages (e.g. sh, csh, perl, python, ...).

The "xvd" display program was developed in 1994 by Bob Deen. This X-windows/Motif program
swept aside all the older display technologies, and is still in active use.

The 2000’s saw the porting of VICAR to Mac OS X (2004), as well as a new generation of Java-
based display tools (notably Marsviewer, by Nicholas Toole, in 2003). The early 2000’s also saw
the introduction of the Java-based "transcoder" by Steve Levoe, used for metadata-preserving file
format conversion.

2005 was the end of an era, as the last VMS machine was decommissioned. However, VMS had
been dwindling in popularity for years before that.

Finally, in 2015 we are again seeing the VICAR core released as Open Source.

1.5. VICAR File Format

The VICAR file format is intentionally simple, designed to make it easy to process images. It
consists of an ASCII header for the labels (in KEYWORD=VALUE format), followed by a simple
raster of pixels, potentially with multiple bands (bands are often used for multispectral data,
including simple RGB color). There are a few optional complexities (e.g. binary prefixes); these
are addressed in the VICAR File Format [1] document.

The labels may be continued at the end of the raster, if there is not room at the beginning. This
makes metadata handling very efficient. If the label expands beyond the allotted space, it can be
continued at the end of the file, rather than rewriting the image to make more room.

VICAR Quick-Start Guide

 7

Labels come in three categories. System labels describe the layout of the file itself, and are the
same across all files. Property labels describe the current contents of the file. History labels
contain information about what processing was done to the file.

VICAR files are uncompressed. This makes random-access reads and writes easy, as well as I/O
through one’s own code (not using the file access library). Interestingly, the industry has moved
toward more and more compression while making disk space cheaper and cheaper. There is a
quasi-experimental compression mode embedded in the I/O package but it is used only rarely.

VICAR supports very large files, much bigger than the 2GB typical of many formats. The only limit
is that each dimension must be < 2^31 (~2 billion) . VICAR files also support a wide range of data
types: byte, short int (16-bits), long int (32-bits), float, double, and complex.

The VICAR file format is compatible with both PDS 3 and PDS 4. PDS is the Planetary Data System,
used to archive mission data. Many missions have supplied data to PDS 3 in VICAR format, with
detached or attached PDS labels: MSL, MER, Phoenix, Cassini, Galileo, Voyager, Magellan, MEX
(HRSC), and many older missions. The PDS label skips over (ignores) the VICAR label, while
VICAR is capable of skipping over an attached PDS label. This dual-label capability is very
important; it means processing programs are still able to run on PDS-archived data.

Importantly, the simplicity of the VICAR format (as long as binary prefixes are not used) enables it
to be compatible with the much more restrictive PDS 4 as well. It is one of the few image formats
that PDS 4 will accept.

1.6. Users of VICAR

1.6.1. Historic

VICAR has been used with most JPL planetary missions that have a camera. From the Ranger,
Surveyor, and Mariner series, to Voyager, Viking, Magellan, and Galileo, to Mars Pathfinder, VICAR
played a major role. The primary exception has been the more recent Mars orbiters, where VICAR
saw little use.

VICAR has also been used in other contexts as well. AVIRIS was an airplane-mounted camera,
NEAT was a telescope-based asteroid tracker, and the Cartographic group at JPL used (and still
does use) VICAR for Earth maps of Landsat, GOES, AVHRR, ASTER, Geoeye, Meteosat, MODIS,
Quickbird and Worldview data, among others.

1.6.2. Current

VICAR has a long history, but is very much an active system. Some of the current users are
discussed here.

The biggest current users are the Mars surface missions. The MIPL ground image processing
systems for the MER and MSL rovers are based entirely on VICAR. The recent Phoenix mission
and upcoming InSight and Mars 2020 missions are similarly VICAR-based. This code is in the
critical path for operations, creating stereo terrains and mosaics used to drive and operate the

VICAR Quick-Start Guide

 8

rovers. Unfortunately, the Mars-specific code is not being included in the Open Source release at
this time.

AFIDS (Automatic Fusion of Image Data System) is a state-of-the-art Earth mosaic/cartography
system developed by JPL. It handles automated subpixel registration, orthorectification, and huge
(>> 2GB) mosaics. It integrates many open source tools with VICAR core processing. AFIDS
makes extensive use of the GeoTIFF standard to aid in cartographic projections of images data. It
also supports NITF (National Imagery Transmission Format), and thus sees extensive use by the
Department of Defense. Efforts are underway to bring this capability to the planetary world.

Cassini uses VICAR for telemetry processing, data validation and analysis. Users also do mapping,
photometric analysis, and navigation (pointing correction) using VICAR.

DLR Berlin uses VICAR extensively, for HRSC (Mars Express), VMC (Venus Express), ISS and VIMS
(Cassini), and Dawn framing camera, and for stereo processing of LROC (LRO), MDIS (Messenger),
and OSIRIS (Rosetta).

The PDS Rings node used VICAR for reprocessing of Voyager data. A different team is currently
proposing other Voyager reprocessing using VICAR to the NASA PDART (ROSES) call.

VICAR is also used for Earth processing, including classification/segmentation, change detection,
large mosaics, multi-band processing detecting thermal anomalies, and cloud detection using
various instruments.

As described above, the PDS Data Archive holds extensive collections of data in VICAR format.

1.7. Components of VICAR in this Release

The following represent some of the major components included in the Open Source release.

 Almost 350 application programs (see Section 5 for a list)
 Command-line parsing (shell-VICAR) and optional environment (TAE)
 VICAR-format Image I/O library, in both C/C++/Fortran, and Java versions
 "xvd" image display program
 File format conversion utility ("transcoder"), which converts between most common

file formats (including VICAR, PDS, ISIS, and FITS, as well as industry standards like
JPEG, PNG etc), and preserves metadata (at least for some conversions).

 IBIS (Image-Based Information System) for handling large tabular data sets
 Java-based JadeDisplay image display library and JADIS stereo image display library

(both already open source’d separately, but included here).

1.8. Motivation for Release

Why is VICAR being released now? VICAR had a long history of open source, up until the mid-
1990’s. There are several reasons for releasing now.

VICAR Quick-Start Guide

 9

Almost all users or potential users want/need source code. We were negotiating deals with
almost all users to get source code anyway. This was inefficient; a blanket authorization would be
much easier.

There was no longer a need to keep it proprietary. ITAR has become somewhat more lenient of
late, with most VICAR code clearly not covered. The parts that are questionable (such as telemetry
processors) have been removed from the Open Source delivery.

JPL is encouraging Open Source much more now than before. It used to be very difficult to get
approvals for release, and anything that was released had to go through Open Channel, which was
not a convenient distribution mechanism. Now the process has been streamlined, and modern
venues like SourceForge and GitHub are now allowed for distribution.

VICAR is a grab bag. Some parts of it are sleek and modern and cutting-edge, used daily today.
Other parts are old and creaky, haven’t been touched in decades, and may or may not even work
any more. It is important to get code for older missions out there for posterity so that others can
process it. The older missions are a treasure trove of data, but JPL does not have funding to work
with that data. Providing the code gives other researchers that opportunity. Even if a piece of
code doesn’t work (say, due to a missing database), access to the source means the programs can
be fixed, or algorithms can be extracted and used in other contexts.

Finally, VICAR does not have the user base it used to. Open Source is the only way to get any of
that back.

This all crystallized during discussions at the First Planetary Data Workshop in Flagstaff in 2012.
There we realized we had to do this; it simply took some time to pull it all together.

Note that at this time, we are delivering VICAR old-school: as a downloadable tarball. We are not
supporting a collaborative SourceForge or GitHub kind of development environment. While that
is something we would like to do eventually, the reality is that if we waited for that to happen we’d
never get the code released.

We do, however, request that you submit any changes or enhancements you make back to us, so
we can include them in the next version of VICAR. We cannot guarantee to include all (or even
any) changes, but we want to do as much as we can given our resource constraints.

1.9. Obtaining VICAR

The Open Source page for VICAR is:

http://www-mipl.jpl.nasa.gov/vicar_open.html

That page will tell you where the current repository is.

At first, we are handling the Open Source version in the traditional release manner: download a
tarball which has everything, and do what you want with it (within the licensing terms of course).
With this release, we also are providing the VICAR source via GitHub.

VICAR Quick-Start Guide

 10

Although not required, we request that you send any changes you make back to us. Assuming the
changes don’t break anything important, we would like to incorporate them back into the mainline
code base for the next release.

1.10. Supported Platforms

VICAR is officially supported on the following platforms:

 Linux (32-bits)
 Solaris 10

That means we have done full regression and validation testing on it (or at least on the parts we
use regularly).

In addition, VICAR is known to work on:

 Linux (64-bits)
 Mac OS X

We simply don’t have the resources to fully test those platforms. However, all tests that we have
done, show it works.

Given that the entire package is caveat emptor - we make no warranty express or implied - then in
reality all four platforms can be considered supported.

VICAR Quick-Start Guide

 11

2. Getting Started with VICAR
This section provides an overview of the available VICAR documentation, pointing out what is
current and what is not. It then shows how to set up VICAR and do a simple aliveness test. Next is
a brief overview of three important new areas not covered by the existing documentation: shell
command line, image display with xvd, and the transcoder. It finishes up with a short description
of the most important general-purpose VICAR programs.

2.1. Documentation Status

2.1.1. General Guides

As mentioned in the introduction, the VICAR documentation leaves much to be desired. This
section will help you navigate what we have, and find the good bits.

2.1.2. VICAR User’s Guide

The VICAR User’s Guide [5] was written in 1994. It contains information about both the VMS and
Unix versions of VICAR. Unix support was "new" at the time. There was no shell-VICAR concept
yet, so TAE was the only command-line processor.

Still, it provides a reasonable description of how to use VICAR with TAE (which is still possible). If
you concentrate on the Unix parts and ignore VMS, it is still valid as far as it goes.

However, it should be noted that it is generally far easier to write VICAR programs in a standard
Unix scripting language (e.g. sh, csh, perl, python... there are many) and use standard Unix job
control (background processing, cron jobs, etc) to run systematic jobs. TAE can be used, especially
if you have heritage code, but we at MIPL rarely use it ourselves any more.

Note that tapes are no longer supported in VICAR.

2.1.3. VICAR File Format

This document [1], written in 1994/5, is still perfectly valid and current, with a few exceptions
noted below.

The most important recent addition by far is the ability to skip over a PDS3 or ODL label in order
to get at the VICAR label. This capability, added for MER, allows for dual-labeled files... one with a
PDS3 or ODL label, followed by a VICAR label.

The VICAR I/O packages look for "PDS_VERSION_ID" or "ODL_VERSION_ID" at the start of a file
(they are functionally equivalent; MER and PHX data use PDS_VERSION_ID while MSL uses
ODL_VERSION_ID). If this is found, the PDS/ODL label is parsed just enough to look for a
"^IMAGE_HEADER" keyword. The value is an integer followed by a unit. The unit can be either
<BYTES> or <RECORDS>. If bytes, that many bytes are skipped from the beginning of the file. If
records, then the "RECORD_BYTES" keyword is looked for, the values are multiplied together, and
that many bytes are skipped.

VICAR Quick-Start Guide

 12

Once these bytes are skipped, the file is treated exactly like any other VICAR file, starting at that
point. The PDS/ODL label is never again referenced or read.

Note that there is NO support for writing these attached labels in VICAR; output files are always
pure VICAR. These files can be created using the Transcoder (described later).

The second update is the list of supported platform names. For a current list see the declaration of
host_table at the top of rtl/source/xvhost.c. Note that "JAVA" (HIGH, IEEE) is also supported even
though it is not in that table.

The final recent addition is the possibility of compressed images. Compressed images are not
really standard VICAR, but there is some support for them built in. If the COMPRESS keyword is
present, the value describes the type of compression. Currently the only implemented types are
BASIC and BASIC2, which are variants of simple run-length encoding (good for sparse data sets
with lots of 0’s).

Note however that support for compression is disabled by default; you must define
RTL_USE_COMPRESSION to 1 in rtl/inc/xvmaininc.h before compiling to enable it.

There is a complete absence of documentation for compression; even the source code is not well
documented. If you want to use compression, see rtl/source/basic_compression.c.

Compression is not supported and not recommended for use. It is mentioned here only because it
exists.

2.1.4. VICAR Run-Time Library Reference Manual

The VICAR Run-Time Library is the C/C++/Fortran image I/O and parameter processing library.
It is the true core of VICAR. The RTL Reference Manual [3] is up to date, with the exception of two
new routines.

The routines xvplabel/zvplabel and xvplabel2/zvplabel2 are new since the RTL Reference Manual
was written. These write the program parameters out to the VICAR history label. They are quite
important and zvplabel() is called in every Mars program in order to preserve parameters. It
really should be called in every program at some point. The difference is that zvplabel2() writes
out all parameters, while zvplabel() writes out only the non-defaulted (i.e. specified by the user)
parameters.

For calling sequences for these routines, see the comments at the top of rtl/source/xvplabel.c.

2.1.5. VICAR Porting Guide

The VICAR Porting Guide [6] was written to help application programmers during the port from
VMS to Unix. At the time, it also served as an update to the RTL Reference Manual. However, most
of the still-relevant information has since been transferred to the RTL Reference Manual
(especially in section 2, Programming Practice).

VICAR Quick-Start Guide

 13

There may be some residual historical interest in the Porting Guide. In addition, there are a
number of VICAR programs that were never ported to Unix due to perceived lack of need; if any of
these were ever ported the Guide would be helpful. (These unported programs are not included in
the VICAR Open Source release).

2.1.6. Building and Delivering VICAR Applications

This document [4] describes the application build system (vimake) and the packer (vpack, which
packs source code into .com files - similar in concept to tar files).

The document is still up to date and useful as far as it goes. However, there are additional vimake
commands that have been added since it was written. Most of these are LIB_* macros, but there
are others.

The best source of documentation for these is the vimake templates themselves. If you come
across an undocumented macro in an imake file, look at util/imake_unix.tmpl and
util/imake.config. Search for the macro; the comments nearby should describe the purpose of the
macro.

Note that the list of "external" libraries (meaning not developed by MIPL; these are accessed by
the LIB_* macros) has been pared down greatly for the Open Source delivery. Only those external
libraries needed for the Open Source code are included.

2.1.7. Application Program Help (PDF files)

Each VICAR application program has associated with it a .pdf file of the same base name (thus the
program "label" has "label.pdf"). These files are NOT Adobe Portable Document File PDF’s!!! They
are plain text files.

In VICAR, PDF means Parameter Definition File. Unfortunately, Adobe chose the same name we
had been using already for years.

The VICAR PDF files contain program-readable descriptions of each program parameter - data
type, valid values, default, etc. They also - more importantly - contain the help for the program.

The PDF help has three sections. The first is overall program documentation. The second,
starting with a ".level1" line, contains a short description of each parameter. The third, starting
with ".level2", contains a complete description of each parameter.

In general, the PDF help is good, describing the program, its operation, algorithms, parameters etc.
in detail. The PDF help should be the primary source of information for any given program.

However, many PDF’s were written in the VMS days, so examples often use VMS file paths, etc.
These should be easily translatable to Unix equivalents.

Many more PDF’s were written before shell-VICAR. So almost all examples use TAE command-line
syntax. See the discussion below about the shell syntax to translate these to work outside of TAE.

VICAR Quick-Start Guide

 14

The PDF help is extracted into HTML as part of the build process, and this is included in the built
VICAR tree in the $V2TOP/html/vichelp directory.

Note: PDF files come in two distinct flavors: "process" and "procedure" (distinguished by the first
line in the file). You will interact mostly with process PDF’s (which wrap application programs).
See Section 2.5.8 for a discussion of procedure PDF’s. Both contain help, however.

There is also an old command-line menu system that can help find programs. To access it, start up
TAE (type "vicar") and then type "menu". The menu has not been kept up to date, but it may still
be useful to some.

2.2. Building and/or Installing VICAR

VICAR is distributed with a collection of third-party libraries, called "externals." VICAR can be
installed from pre-built VICAR and externals binaries. The VICAR source also can be built with the
pre-built externals binaries.

For VICAR build and/or installation instructions, see the companion document
VICAR_build_2.0.pdf. VICAR can be built and installed anywhere, but the rest of this document
assumes /usr/local/vicar/v2.0

2.3. Starting up VICAR

VICAR requires a number of environment variables to run, even from the shell. These are set up
by the vicset1.csh and vicset2.csh scripts.

VICAR is designed around the csh (or tcsh) shell. The startup scripts are all for csh. If you use a
different shell for VICAR, you may need to write your own setup script to hand-set a few of the
variables. This is not a supported configuration, but the best bet is to just try it and see what is
needed.

Before running vicset1/2 you have to tell it where the top of the VICAR tree is. This is the
directory that contains "vicset1.csh". The actual name varies across distribution tars, and with git
download. Obviously, insert this location in the setenv command below.

setenv V2TOP /usr/local/vicar/v2.0/vicar_open_2.0

source $V2TOP/vicset1.csh

source $V2TOP/vicset2.csh

The v2.0 directory is where the source tar was unpacked and built. See VICAR_build_2.0.pdf for
details. Note that the csh files above are source’d rather than being executed. This is so they can
set shell and environment variables which survive after the scripts are done.

Why are there two scripts? Vicset1 is the primary one, and sets up environment variables and
other things that are inherited by subshells. Vicset2 sets up aliases, which are not inherited.
Therefore it is recommended that you put the following in your ~/.cshrc file:

if ($?V2TOP != 0) then

VICAR Quick-Start Guide

 15

 source $V2TOP/vicset2.csh

endif

That will ensure that subshells get the full VICAR environment, if it was set in the parent (without
disturbing anything if you did not set up VICAR). However, it is not required that you do the
above; most subshells do not need the aliases set up by vicset2.

If you want to set up VICAR by default in your .cshrc then the following is recommended:

if ($?V2TOP == 0) then

 setenv V2TOP /usr/local/vicar/v2.0/vos

 source $V2TOP/vicset1.csh

 source $V2TOP/vicset2.csh

else

 source $V2TOP/vicset2.csh

endif

2.4. Simple Aliveness Test

Before doing anything, you have to build VICAR, since it is distributed only in source form. Follow
the instructions on the Building VICAR [2] document. The following will execute a small set of
programs that test the basics of VICAR. While this is not even close to an exhaustive test, if these
programs work then it is likely that the build generally succeeded. Lines starting with % are lines
you type (without the %); the rest shows output.

This assumes you have done the VICAR setup in the previous section.

% $R2LIB/gen a

Beginning VICAR task GEN

GEN Version 6

GEN task completed

% $R2LIB/list a

Beginning VICAR task LIST

 BYTE samples are interpreted as BYTE data

 Task:GEN User:rgd Date_Time:Tue Jun 9 20:59:51 2015

 Samp 1 3 5 7 9

 Line

 1 0 1 2 3 4 5 6 7 8 9

 2 1 2 3 4 5 6 7 8 9 10

VICAR Quick-Start Guide

 16

 3 2 3 4 5 6 7 8 9 10 11

 4 3 4 5 6 7 8 9 10 11 12

 5 4 5 6 7 8 9 10 11 12 13

 6 5 6 7 8 9 10 11 12 13 14

 7 6 7 8 9 10 11 12 13 14 15

 8 7 8 9 10 11 12 13 14 15 16

 9 8 9 10 11 12 13 14 15 16 17

 10 9 10 11 12 13 14 15 16 17 18

% $R2LIB/copy a b

Beginning VICAR task COPY

 COPY VERSION 12-JUL-1993

% $R2LIB/label -list b

Beginning VICAR task LABEL

LABEL version 15-Nov-2010

**

 ************ File b ************

 3 dimensional IMAGE file

 File organization is BSQ

 Pixels are in BYTE format from a SUN-SOLR host

 1 bands

 10 lines per band

 10 samples per line

 0 lines of binary header

 0 bytes of binary prefix per line

---- Task: GEN -- User: rgd -- Tue Jun 9 20:59:51 2015 ----

IVAL=0.0

SINC=1.0

LINC=1.0

BINC=1.0

MODULO=0.0

---- Task: COPY -- User: rgd -- Tue Jun 9 21:00:06 2015 ----

VICAR Quick-Start Guide

 17

**

% $R2LIB/list b

Beginning VICAR task LIST

 BYTE samples are interpreted as BYTE data

 Task:GEN User:rgd Date_Time:Tue Jun 9 20:59:51 2015

 Task:COPY User:rgd Date_Time:Tue Jun 9 21:00:06 2015

 Samp 1 3 5 7 9

 Line

 1 0 1 2 3 4 5 6 7 8 9

 2 1 2 3 4 5 6 7 8 9 10

 3 2 3 4 5 6 7 8 9 10 11

 4 3 4 5 6 7 8 9 10 11 12

 5 4 5 6 7 8 9 10 11 12 13

 6 5 6 7 8 9 10 11 12 13 14

 7 6 7 8 9 10 11 12 13 14 15

 8 7 8 9 10 11 12 13 14 15 16

 9 8 9 10 11 12 13 14 15 16 17

 10 9 10 11 12 13 14 15 16 17 18

% $R2LIB/gen c 1024 1024

Beginning VICAR task GEN

GEN Version 6

GEN task completed

% xvd c &

[1] 11255

%

The last command fires up the xvd image display program. It should come up with a diagonal
ramp pattern.

If these commands do not work, check the build log for errors, and build again if necessary. If you
continue to have problems, contact us and we will try to help - we do not have troubleshooting
documentation yet.

One may infer from these examples that filename extensions are not required. Indeed that is the
case: VICAR programs do not expect or enforce any filename convention. Any extension can be
used, or none at all. Most of the time a .vic or .VIC extension is preferred to indicate it’s a VICAR

VICAR Quick-Start Guide

 18

file, but sometimes .red/.grn/blu are used, or many other things. Many PDS holdings use .IMG,
although this author’s preference is to use .IMG for PDS-format files and .VIC for vicar.

2.5. Shell VICAR Syntax

As mentioned previously, shell-VICAR allows programs to be executed directly from the Unix shell,
without needing TAE. This allows any normal Unix scripting language to be used with VICAR
programs. ("Procedure" PDF’s using the TCL language are handled differently; see Section 2.5.8).

This section describes how shell-VICAR syntax differs from TAE syntax. This will help translate
examples in the PDF help, or the VICAR User’s Guide. It also serves as a reference for how to
construct command lines. All the examples in here will run if typed in order as shown; the "gen"
command generates files so no inputs are needed.

2.5.1. Pathname

TAE knows where to find programs automatically. Not so with the shell; you generally have to
specify $R2LIB/ (or other directory, but $R2LIB is by far the most common) to run programs. It is
certainly possible to put $R2LIB in your $path to remove this limitation, but we don’t generally do
so for fear of name collisions with the 350 VICAR applications and standard Unix utilities. It just
seems safer to require the $R2LIB.

$R2LIB/gen a

Almost all programs are in $R2LIB. There are some completely unsupported programs in $R3LIB
- we do not test them or support them in any way. If you have other parts of the VICAR system
there can be more directories, e.g. $MARSLIB for the Mars programs or $HWLIB for the DLR
extensions to VICAR.

2.5.2. Subcommands

A few programs have "subcommands". The program LABEL is the primary one you will come
across, but there are others. In TAE, you put the subcommand right after the command, e.g. label-
list. In the shell, you put a space before the "-". So it looks like a Unix -keyword, but it has to be the
first parameter.

$R2LIB/label -list a

2.5.3. Positional and key=value Parameters

All VICAR parameters can be specified using key=value, where key is the name of the parameter in
the PDF. However, it is possible, in both TAE and the shell, to omit the key= for the first few
parameters. These so-called positional parameters have to be in the same order as in the PDF. As
soon as you want to skip a parameter, you have to go to the key=value form. Once you start
key=value, you cannot go back to positional on the same command line.

Basically, positional parameters are just a shorthand for the most commonly used parameters.
The first two parameters to almost all VICAR programs are INP and OUT.

VICAR Quick-Start Guide

 19

The key in key=value need not be the entire parameter name in the PDF; it can be shortened as
desired, as long as the name is unique. So if a program had parameters ORANGE and OFORM,
these could be shortened to OR and OF if desired. Any truncated version of ORANGE could be used,
as long as it doesn't become ambiguous with respect to other parameters defined for the program.
An actual example is the program F2, which takes several parameters, including FORMAT and
FUNCTION. It is common to find scripts using F2 that identify the FUNCTION parameter as just
FUN.

$R2LIB/gen b 50 50

$R2LIB/copy b c sl=10 nl=20

$R2LIB/copy inp=b out=c sl=10 nl=20

Note that it is legal to have spaces on either side of the "=" if desired. This is very useful when
dealing with very long filenames; you can say e.g. "inp= NL<tab>" and hit tab and let the shell’s
filename completion fill in the value for you. Without the space, it would look for a file starting
with "inp=NL" which is not what you want; with the space it looks for files starting with "NL"
which is what you want.

2.5.4. Keywords

Many programs have "keywords" (not to be confused with the parameter name in key=value).
These keywords are parameters with a defined set of valid strings, generally used as flags. These
parameters can be specified by key=value but they can also be specified by "-value", like Unix
keywords. In TAE, keywords are indicated by an apostrophe before the name: ‘value . You will
see this a lot in examples, convert them to -value . Keyword names can also abbreviated as long as
they remain unique.

$R2LIB/label -list b -dump

$R2LIB/gen d 10 10 -real ival=-1 linc=1 sinc=0

$R2LIB/list d -zero

2.5.5. Multivalued Parameters

Many VICAR parameters accept more than one value. In TAE, these multivalued parameters are
enclosed in parentheses, e.g. irange=(-1,10) . In shell-VICAR, that’s what the parser ultimately
wants to see. However, parentheses have special meaning to the shell, therefore they must be
quoted. This is most often done with backslashes, e.g. irange=\(-1 10\) , but can also be done
with quotes: irange="(-1,10)" . Note that values can be separated by either spaces or commas, and
spaces are allowed around the parentheses.

$R2LIB/cform d e irange=\(-1 10\) orange=\(0 255\) -byte

$R2LIB/gen a.red 1024 1024

$R2LIB/gen a.grn 1024 1024 linc=-1

$R2LIB/gen a.blu 1024 1024 sinc=-1 ival=128

$R2LIB/viccub \(a.red a.grn a.blu \) a.color

VICAR Quick-Start Guide

 20

2.5.6. Strings and Quoting

String parameters can be very tricky due to shell quoting rules. If there are no special characters
in the string, then it can be treated like a number with no special handling. But if it contains
special characters or spaces, it can get tough.

The shell-vicar parser needs to see double quotes around strings containing spaces or special
characters. That means the double quotes themselves have to be quoted. This is often done by
putting the entire thing in single quotes outside the double quotes. It can also be done by escaping
the double quotes. If the value itself has to have quotes (as is often the case with label -add) it can
get really messy (see the last example below, which pops out of shell quoting in order to have a
backslash-quoted single quote be part of the string itself... whew!)

$R2LIB/f2 e f func=’"in1*2"’

$R2LIB/label -add f g item=’"key=value test=1.5"’

$R2LIB/label -add g h item=’"key=’\’’space value’\’’ test=1.5"’

Note that if you see the message:

[TAE-POSERR] Positional values may not follow values specified by

name.

it often means the quotes were messed up somehow.

The trick with quoting is to think about what the shell-vicar parser itself needs to see, and then
back up to what needs to be specified on the shell to get there.

2.5.7. Output Parameters

A few programs have output parameters. For example, getlab will return the value of a label item,
which can be used by the script. Output parameters are written to a file specified by
V2PARAM_FILE (by default a file in /tmp named with the process ID to avoid collisions). This file
can then be accessed via the v2param program.

$R2LIB/label -list h

$R2LIB/getlab h test -real

v2param itm_name

1.5

set x = `v2param itm_name`

$R2LIB/getlab h key -string

v2param itm_name

space value

$R2LIB/getlab h key -string -inst itm_inst=1 itm_task=label

v2param itm_name

VICAR Quick-Start Guide

 21

value

setenv NAME `v2param itm_name`

The shell variable x or environment variable NAME can then be used elsewhere in the script.

Note that when using v2param, the keyword you specify is the name of the parameter with type
"name" in the PDF. So in the case of getlab, you always use v2param with itm_name; the actual
parameter name you’re getting is in the call to getlab.

$R2LIB/gen i 10 10

$R2LIB/maxmin i

more `v2param -file`

setenv MAX `v2param MAXIVAL`

2.5.8. TCL Procedures

PDF files come in two distinct flavors: "process" and "procedure" (distinguished by the first line in
the file). The "process" PDF is used for application programs written in Fortran, C, or C++, and is
the form we discuss mostly in this guide. The "procedure" PDF is a script, which calls other VICAR
programs or scripts. The scripting language, called TCL (TAE Command Language) is defined by
TAE and includes if/else, variables, and other usual scripting language features. Procedure PDF’s
are still in use (AFIDS uses them extensively), although they have been supplanted by standard
scripting languages (shell, perl, python, etc) in most situations. The distinction is important in that
VICAR procedures are more difficult to use from the shell; the user must invoke them using the
"taetm" utility:

taetm -s "vicar command line"

Note that this is a TAE command line using TAE syntax rules, not shell-VICAR syntax rules. Also
important is that the entire command line must look like one "word" to the shell, thus the quotes.

2.6. Xvd Image Display

The "xvd" program is a high-performance display program for VICAR and PDS 3 images. It is
written in C++ using X-windows and Motif. To use it, you will need an X-windows server -
automatic for Linux but you have to obtain one for the Mac (at
http://xquartz.macosforge.org/landing/).

Running xvd is simple, as its location is put in $PATH for you by vicset1.

xvd &

This will bring up a file selection window, allowing you to select a file to view.

More commonly, a filename can be given on the command line. This can be a single-band or multi-
band (color) file. Alternatively, three files can be given, if the bands are separate:

http://xquartz.macosforge.org/landing/

VICAR Quick-Start Guide

 22

xvd x.vic &

xvd x.red x.grn x.blu &

The trailing & puts the program in the background, freeing the shell window for other tasks.

There are several options that can be provided to xvd (before the filename):

-min x : Sets the minimum data range for a non-byte image

-max y : Sets the maximum data range for a non-byte image

-fullscreen : sends xvd into full-screen mode. Right-click brings up a menu, allowing you to get out
of this mode.

-fit : Does a zoom to fit, making the image fit the window size

-width w : Sets the initial width of the window

-height h : Sets the initial height of the window

-x x : Sets the X position of the window

-y y : Sets the Y position of the window

-xrm resource : Sets an arbitrary Xrm resource string (see the XVd.xres resource file in $GUILIB
for examples)

-help : prints these options to the terminal

Of these, -min and -max are very commonly used, -fit is occasionally used, and the others are
rarely used.

The xvd program is pretty self-explanatory and easy to use, so it is not described in detail here,
beyond a few small items of note:

 Non-byte data is converted to byte for display using the data range. This is normally
the minimum and maximum values in the image, but can be set with the File/Data
Range menu or the -min/-max command line options. Stretches are applied after the
conversion to byte.

 The magnifying glass and cursor stretch options initiate modes that are non-intuitive
to get out of. Simply right-click (often command-click on a mac, depending on your X-
windows setup) to bring up a pop-up menu that allows you to turn these off.

 If stretch does not seem to work, go to Edit/Preferences and switch to S/W Lookup
Table. Some X-windows servers incorrectly advertise the capability to do a hardware
stretch, which xvd pays attention to.

 Save As works in a somewhat non-intuitive way; rather than saving xvd’s output, it
actually calls VICAR programs to manipulate the data in the same way that xvd did.

VICAR Quick-Start Guide

 23

This generally works but can fail with certain types of files (notably, PDS 3 files that
are not also VICAR files).

 The Help system and Print options likely will not work, as they are based on first-
generation web browsers.

The xvd program supercedes the older VIDS image display system, which is based on the Virtual
Raster Display Interface (VRDI). Both of these are still included in the VICAR delivery, but their
use is not recommended.

2.7. File Format Conversion (Transcoder)

The Transcoder is a powerful Java program that does conversion amongst many common file
formats, and can preserve metadata. It is based on the Java Image I/O package, with additional
plugins courtesy of VICAR for VICAR, PDS 3, ISIS 2, and FITS images. It also has the beginnings of
PDS 4 support.

The transcoder is invoked using the rather awkward command:

java jpl.mipl.io.jConvertIIO

For most active missions we write wrapper scripts around this for common operations, but these
scripts are not currently included with the delivery. An example of such a script, to convert vicar
(or really, anything) to PNG, follows:

#!/bin/csh

Simple script to convert vicar -> png.

set base = ${1:r}

java -Xmx3072m jpl.mipl.io.jConvertIIO inp=$1 out=${base}.png

format=png 2rgb=true oform=byte ri=true

Running it with no options prints a (long) help list. Describing every option is beyond the scope of
this quick guide, but a few of the most important are described here.

The three most important are inp=, out=, and format=. Using these you can convert any known
image format to any other, without preserving metadata. For example:

java jpl.mipl.io.jConvertIIO inp=file.vic out=file.png format=png

For a list of known formats, run it with "plugins" as the (only) argument. The list is quite
extensive!

The 2rgb=true argument will convert a single-band input file to color for those formats that are
naturally color (such as jpeg).

Metadata-preserving transformations are controlled by an XSL stylesheet, that says how to
convert the metadata between formats. How to write one is beyond the scope of this document,

VICAR Quick-Start Guide

 24

but several are provided in $V2TOP/java/jpl/mipl/io/xsl/ . The most important of these are
VicarToPDSmer*.xsl, VicarToPDSmsl_*.xsl, and VicarToPDSphx.xsl. These convert from VICAR to
PDS (3) format and are how we create the dual-labeled products for Mars surface operations and
archive. Use the highest numbered one available.

For example, here is a script that will create the MSL dual-labeled files, along with a PDS 3
detached label (in the second call):

#!/bin/csh

Simple script to transcode (vicar -> pds/odl) an image.

set base = ${1:r}

java -Xmx1024m jpl.mipl.io.jConvertIIO inp=$1 out=${base}.IMG

xml=false format=pds embed_vicar_label=true ri=true

xsl=$V2TOP/java/jpl/mipl/io/xsl/VicarToPDSmsl_Blob_ODL12.xsl

pds_label_type=ODL3

java -Xmx1024m jpl.mipl.io.jConvertIIO inp=${base}.IMG

out=${base}.LBL format=pds pds_detached_only=true ri=true

xsl=$V2TOP/java/jpl/mipl/io/xsl/PDSToPDSmsl_Blob_ODL2PDS_10.xsl

pds_label_type=PDS3

2.8. Most Important General VICAR Programs

This section briefly describes some of the most important, commonly used, general VICAR
programs. The classification as important is entirely the opinion of the author. It is not meant to
imply that the other programs are not important! These are simply the programs that get used
over and over in scripts and interactive processing.

See the program help for details; this section just points out the programs with a few examples.

2.8.1. F2

The F2 program does general math on an image, and is one of the most powerful generic VICAR
programs. The function can be specified with either Fortran or C like syntax; the author generally
uses the Fortran syntax. Some examples are below.

Subtract two images with a bias:

$R2LIB/f2 \(a b\) c func=’"in1-in2+128"’

Subtract off the line number, but only where the value is non-0, and only on band 1. For Mars
surface images, this converts a disparity image into a delta-disparity image.

$R2LIB/f2 a b func=’"(in1-line)*(in1.ne.0)"’ nb=1 sb=1

Blank out a 100-pixel radius circle centered at 512,512:

VICAR Quick-Start Guide

 25

$R2LIB/f2 a b func='"in1*(sqrt((line-512)**2+(samp-

512)**2).gt.100)"'

2.8.2. LABEL

Does label manipulation on an image. One of the few programs with subcommands. The -list
subcommand is one of the most commonly used programs; it prints the label. The -add and -
replace subcommands allow modification of the label.

2.8.3. CFORM

Converts data types. Very useful for converting halfword (16-bit integer) to byte in preparation
for transcoding to a byte format such as jpeg or png. For example this convers a halfword image
with a data range of 0-4095 to byte:

$R2LIB/cform a.vic a.vicb irange=\(0 4095\) orange=\(0 255\) -byte

2.8.4. DIFPIC

Computes a difference image for two input images. While F2 could be used to compute a
difference image, DIFPIC also prints statistics about the differences. Even more statistics are
printed if an output file is supplied.

2.8.5. VICCUB

VICCUB is a very simple program that takes 3 inputs and creates a single 3-band output. This is
commonly used to create color images out of separate bands, or anaglyphs out of stereo images
(using \(left right right\) as input creates an anaglyph).

2.8.6. STRETCH

Does contrast enhancement (stretch) on an image. There are many different modes and options,
including histogram-based stretches.

2.8.7. GEN

Generates VICAR files from scratch. Not much use in actual processing but (as can be seen from
this document) very handy in test scripts and example code.

2.8.8. SIZE

This program resizes images, with or without interpolation.

2.8.9. FLOT

90 and 180 degree rotations and reflections of images.

2.8.10. HIST

Computes and prints histograms and other statistics.

VICAR Quick-Start Guide

 26

2.8.11. MAXMIN

Computes the maximum and minimum pixel values in an image, and where they are. Notably, the
values can be output for use in scripts (for example, setting a data range with cform).

$R2LIB/maxmin a

setenv MIN `v2param MINIVAL`

setenv MAX `v2param MAXIVAL`

2.8.12. GETLAB

Extracts label items from an image, returning them so they can be used in scripts. See example
under "Output Parameters", above.

2.9. Image Based Information System (IBIS)

In 1975 Fred Billingsley and Nevin Bryant proposed that image processing technology could be
used for registration and processing of multiple data planes over a geographic area. They created a
comprehensive geographic information system, called IBIS, that allowed the integration of image
data with tables of disparate geographic information. Their original system allowed for tables,
graphics and images, but today IBIS only refers to the data table portion. These tabular data
resemble a spreadsheet. IBIS files have VICAR labels and are described internally as
FORMAT='BYTE' TYPE='TABULAR'

IBIS works on rows and columns of data. Usually (but not always) columns of data have the same
units (size, distance, velocity, geographic coordinates, etc) while rows of data refer to each
element in the data set. So by setting up the relationships properly one can reference each cell to
match some pixel, or set of pixels, in a corresponding image. By this, one can overlay important
geographic inventory data on the image.

IBIS data can be floating point (single or double precision), integer or ASCII text. Internal
descriptors are used to keep track of this. Tables can arbitrarily large (millions of columns by
millions of rows). Tables are allowed to have descriptive text headers.

IBIS allows the user to perform just about any mathematical operation on a column or row or any
string operation if the data is text. Normally, these operations move data from one or more
columns (or rows) to a new column (or row). IBIS tables can be expanded pretty arbitrarily to
accommodate new data as development proceeds. It is also possible to extract data from one
tabular data set and put it in a new tabular file or to merge it into an existing tabular file (with
some limitations). Programs ACOPIN and VQUIC can transform any ASCII text file (with defined
separators) into an IBIS Table. Through proper relationships, one can manipulate one or more
columns (or rows) to create an output image file. Correspondingly, image data can also be
transformed into an IBIS table.

Programs which support IBIS are listed in Section 5.2 below.

VICAR Quick-Start Guide

 27

3. Getting Started with Development
VICAR is very much an environment in which to write image processing programs. Anything more
than a cursory treatment is well beyond the scope of this document. The best suggestion is to look
at other programs (generally, the newer the better) and follow their lead - program by example.
Especially for the image I/O and parameter processing patterns.

In addition to the Run-Time Library (see the RTL Reference Manual [3]), which contains the core
infrastructure for VICAR, there are a whole host of application-level subroutines in p2/sub (with a
few in p1/sub). These are generally self-documenting, with help files included in the .com file
package, or otherwise described by source-code comments.

If you make changes to VICAR, add capabilities, fix bugs, etc, we would like to hear about them! If
possible, contribute the changes back to us and we will do our best to incorporate them in the next
version of VICAR.

3.1. Building a Program

Building programs is described in the Building and Delivering VICAR Applications [4] document.
Only the briefest outline is here.

VICAR programs are packed into .com files. These are basically tar files, but in text format. They
are simply a way to package related files together into one unit. The .com extension is a heritage
from VMS, when they could be self-executed in order to extract their contents (and this boilerplate
VMS code is still in the .com files!). However, now the vpack/vunpack programs are used to
extract or build a .com file.

Building a VICAR program is controlled by the imake file. This is a description of what to build, in
the form of C preprocessor macro definitions. It does not say how to build it; that is the province
of the vimake program. During the port from VMS to Unix, this scheme allowed the same build
description to be used on both operating systems. The system still proves useful, as different
platforms still need different compile options and commands.

This sequence will build a program (in this case gen) in the local directory:

cp $V2TOP/p2/prog/gen.com .

vunpack gen.com

vimake gen

make -f gen.make

3.2. Java

There is a fair amount of Java code included with this delivery. There are build scripts in
$V2TOP/util/java* but in general, javac will just work for development of Java code. Or use an
IDE.

The primary Java packages are:

VICAR Quick-Start Guide

 28

io : Contains the transcoder and the image I/O plugins

jade : Contains JadeDisplay, which is the core display widget for Marsviewer. Also contains JADIS,
a system for displaying Swing user interface components in stereo. Both packages have been
delivered to Open Source previously; the pages below on the Open Channel Foundation contain
useful documentation (which we have not yet brought back in to the Open Source delivery). Note
that you need not obtain the code from OpenChannel as it is included here.

http://openchannelfoundation.org/projects/JadeDisplay

http://openchannelfoundation.org/projects/JADIS

mars : Contains classes to manage 3-dimensional vectors, and quaternions.

spice : Contains a Java Native Interface (JNI) wrapper around part of the NAIF/SPICE toolkit.

http://openchannelfoundation.org/projects/JadeDisplay
http://openchannelfoundation.org/projects/JADIS

VICAR Quick-Start Guide

 29

4. Use Cases - Doing Something with VICAR

4.1. Landsat Mosaic

Note that this example is not functional in the Solaris and MacOS platforms -- it should be in the
next release.

Landsat data is available in GeoTIFF format from the Global Land Cover Facility at University of
Maryland for all 7 satellites at http://glcfapp.glcf.umd.edu:8080/esdi/

The Landsat-7 panchromatic (band 8) images are provided as unsigned byte pixels. The script
lsatmos.pdf below mosaics two band 8 images using the program featherv, which requires as
input an IBIS table holding merely the names of the input files, where those files have GeoTIFF
labels. Featherv also needs to know the starting line and sample of the output mosaic in the
coordinate system of the first input image. The majority of this script is used to calculate that
starting line and sample:

procedure

local topfile string

local botfile string

local minsl int

local minss int

local maxnl int

local maxns int

local curnl int

local curns int

local fcurol real

local fcuros real

local curol int

local curos int

local tval int

local nl int

local ns int

body

let topfile = "L72042035_03520000321_B80"

let botfile = "L72042036_03620000321_B80"

! convert GeoTIFF to VICAR

vtiff3o-to &"topfile".TIF &"topfile".vic

vtiff3o-to &"botfile".TIF &"botfile".vic

! get image height (nl) and width (ns) for each

lab2tcl &"topfile".vic v1=maxnl v2=maxns keyword=(nl,ns) 'system

lab2tcl &"botfile".vic v1=curnl v2=curns keyword=(nl,ns) 'system

VICAR Quick-Start Guide

 30

! calculate offset between top and bottom

ibis-gen offset nc=8 nr=1 deffmt=DOUB

mf3 offset func="c1=0$c2=0"

pixmap (offset,&"botfile".vic) mapcols=(3,4) pixcols=(1,2) 'pixtomap

pixmap (offset,&"topfile".vic) mapcols=(3,4) pixcols=(5,6) 'maptopix

mf3 offset func="c7=c5+1$c8=c6+1"

ibis2tcl offset v1=fcurol v2=fcuros vartype=(-1,-1) ibisloc=(1,7,1,8)

! nudge offset line and sample

if (fcurol>0.0) let fcurol = fcurol+0.5

if (fcurol<0.0) let fcurol = fcurol-0.5

if (fcuros>0.0) let fcuros = fcuros+0.5

if (fcuros<0.0) let fcuros = fcuros-0.5

let curol = $fix(fcurol)

let curos = $fix(fcuros)

! calculate nl, ns

let minsl = 1

let minss = 1

if (curol<minsl) let minsl = curol

if (curos<minss) let minss = curos

let tval = curol+curnl-1

if (tval>maxnl) let maxnl = tval

let tval = curos+curns-1

if (tval>maxns) let maxns = tval

let nl = maxnl-minsl+1

let ns = maxns-minss+1

! create ibis file mosfile for featherv

ibis-gen mosrec1 nr=1 nc=6

format=("A99","FULL","FULL","FULL","FULL","DOUB") +

 data=(0,0,0,0,1.0) datacols=(2,3,4,5,6) +

 string=(&"topfile".vic) strcols=(1)

ibis-gen mosrec2 nr=2 nc=6

format=("A99","FULL","FULL","FULL","FULL","DOUB") +

 data=(0,0,0,0,1.0) datacols=(2,3,4,5,6) +

 string=(&"botfile".vic) strcols=(1)

ibis-cat (mosrec1,mosrec2) mosfile

! create the mosaic

featherv +

 inp=(&"topfile".vic,&"botfile".vic,mosfile,&"topfile".vic) +

 out=lsat.vic sl=&minsl ss=&minss nl=&nl ns=&ns +

 dfeather=700 moorefac=3 'factor 'progress 'noramp 'geotiff

VICAR Quick-Start Guide

 31

end-proc

The mosaic lsat.vic, viewed in xvd, looks like this:

VICAR Quick-Start Guide

 32

VICAR Quick-Start Guide

 33

4.2. SRTM Mosaic

Note that this example is not functional in the Solaris and MacOS platforms -- it should be in the
next release.

SRTM data is available as 1x1 degree images from the USGS at http://earthexplorer.usgs.gov/

The images are provided as 3601x3601 signed 16-bit headerless binary files. In this example, a
4x5 degree area (33N to 38N, -121W to -117W) is mosaicked. First, the images must be converted
to VICAR format. A parameterized TAE script (srtmlabel.pdf) is used to add VICAR labels to the
headerless image files:

procedure
PARM inp TYPE=STRING COUNT=1

PARM out TYPE=STRING COUNT=1

PARM wlon TYPE=INT COUNT=1

PARM slat TYPE=INT COUNT=1

local wlonp1 int

local slatp1 int

body

let wlonp1 = wlon+1

let slatp1 = slat+1

label-create &inp &out 3601 3601 'half

gtgen inp=&out 'tiecnvrt 'rectfit +

 geotiff=("ModelTiePointTag=(0,0,0,&wlon,&slatp1,0.0)", +

 "ModelTiePointTag=(3600,0,0,&wlonp1,&slatp1,0.0)", +

 "ModelTiePointTag=(0,3600,0,&wlon,&slat,0.0)", +

 "GTModelTypeGeoKey=2(ModelTypeGeographic)", +

 "GTRasterTypeGeoKey=2(RasterPixelIsPoint)", +

 "GeogEllipsoidGeoKey=7030(Ellipse_WGS84)")

end-proc

Then a second script (srtmlabelall.pdf) is used to call srtmlabel.pdf on each of the 20 headerless
files:

procedure

body

srtmlabel n33_w118_1arc_v2.bil n33_w118_1arc_v2.vic -118 33

srtmlabel n33_w119_1arc_v2.bil n33_w119_1arc_v2.vic -119 33

srtmlabel n33_w120_1arc_v2.bil n33_w120_1arc_v2.vic -120 33

VICAR Quick-Start Guide

 34

srtmlabel n33_w121_1arc_v2.bil n33_w121_1arc_v2.vic -121 33

srtmlabel n34_w118_1arc_v2.bil n34_w118_1arc_v2.vic -118 34

srtmlabel n34_w119_1arc_v2.bil n34_w119_1arc_v2.vic -119 34

srtmlabel n34_w120_1arc_v2.bil n34_w120_1arc_v2.vic -120 34

srtmlabel n34_w121_1arc_v2.bil n34_w121_1arc_v2.vic -121 34

srtmlabel n35_w118_1arc_v2.bil n35_w118_1arc_v2.vic -118 35

srtmlabel n35_w119_1arc_v2.bil n35_w119_1arc_v2.vic -119 35

srtmlabel n35_w120_1arc_v2.bil n35_w120_1arc_v2.vic -120 35

srtmlabel n35_w121_1arc_v2.bil n35_w121_1arc_v2.vic -121 35

srtmlabel n36_w118_1arc_v2.bil n36_w118_1arc_v2.vic -118 36

srtmlabel n36_w119_1arc_v2.bil n36_w119_1arc_v2.vic -119 36

srtmlabel n36_w120_1arc_v2.bil n36_w120_1arc_v2.vic -120 36

srtmlabel n36_w121_1arc_v2.bil n36_w121_1arc_v2.vic -121 36

srtmlabel n37_w118_1arc_v2.bil n37_w118_1arc_v2.vic -118 37

srtmlabel n37_w119_1arc_v2.bil n37_w119_1arc_v2.vic -119 37

srtmlabel n37_w120_1arc_v2.bil n37_w120_1arc_v2.vic -120 37

srtmlabel n37_w121_1arc_v2.bil n37_w121_1arc_v2.vic -121 37

end-proc

Running srtmlabelall.pdf creates the 20 GeoTIFF labeled VICAR image files (*.vic). These are
mosaicked together using a third script (srtmmos.pdf). It uses gtappend to mosaic five images at a
time into four vertical columns. Then it uses gtmss to mosaic the four columns into a single image
“srtm.vic”:

procedure

body

gtappend inp=(n37_w121_1arc_v2.vic, +

 n36_w121_1arc_v2.vic, +

 n35_w121_1arc_v2.vic, +

 n34_w121_1arc_v2.vic, +

 n33_w121_1arc_v2.vic) out=w121.vic 'overlap1

gtappend inp=(n37_w120_1arc_v2.vic, +

 n36_w120_1arc_v2.vic, +

 n35_w120_1arc_v2.vic, +

 n34_w120_1arc_v2.vic, +

 n33_w120_1arc_v2.vic) out=w120.vic 'overlap1

gtappend inp=(n37_w119_1arc_v2.vic, +

 n36_w119_1arc_v2.vic, +

 n35_w119_1arc_v2.vic, +

 n34_w119_1arc_v2.vic, +

 n33_w119_1arc_v2.vic) out=w119.vic 'overlap1

VICAR Quick-Start Guide

 35

gtappend inp=(n37_w118_1arc_v2.vic, +

 n36_w118_1arc_v2.vic, +

 n35_w118_1arc_v2.vic, +

 n34_w118_1arc_v2.vic, +

 n33_w118_1arc_v2.vic) out=w118.vic 'overlap1

gtmss inp=(w121.vic,w120.vic,w119.vic,w118.vic) out=srtm.vic 'overlap1

end-proc

When the 3601x3601 images are mosaicked, they overlap by one pixel. The resulting mosaic is a
single-band half-word image with 18001 lines, and 14401 samples per line. Viewing it with xvd
and using a Gaussian stretch yields:

VICAR Quick-Start Guide

 36

VICAR Quick-Start Guide

 37

4.3. Neptune's Satellite Proteus (1989N1)

We are enhancing the faint signal (and noise) above the background, then smoothing out that
noise at the expense of spatial resolution followed by suppression of some smoothing artifacts.

This processing requires three input images:

 C1138920_RAW.IMG available at
http://pds-
rings.seti.org/volumes/VGISS_8xxx/VGISS_8207/DATA/C11389XX/C1138920_RAW.IMG

 C1138920_RESLOC.DAT available at
http://pds-
rings.seti.org/volumes/VGISS_8xxx/VGISS_8207/DATA/C11389XX/C1138920_RESLOC.DAT

 C1241506_CLEANED.IMG available at
http://pds-
rings.seti.org/volumes/VGISS_8xxx/VGISS_8210/DATA/C12415XX/C1241506_CLEANED.IMG

The script performs this in five steps.

procedure

body

! Smooth over reseau marks (fiducial marks)

RESSAR77 (C1138920_RAW.IMG,C1138920_RESLOC.DAT) r

! Subtract camera dark image and crop

F2 (r,C1241506_CLEANED.IMG) nrsub (351,151,400,400) FUNC=IN1-IN2+8

! Stretch the remaining 4 DN

STRETCH nrsub nrstr LINE=(10,13)

! Low-pass filter to reduce noise

BOXFLT2 nrstr nrflt 'LOW NLW=7 NSW=7

! Filter to suppress some artifacts

FILTER nrflt nrfinal NLW=3 NSW=3 WEIGHTS=(1,1,1,4)

end-proc

Following are the initial, intermediate, and final products:

https://webmail.jpl.nasa.gov/owa/redir.aspx?C=1XwhtIvQ0UiaYs4m1oeEjlmk-361BNMIYJPbl0OcPfYgsrayTz2xKfpZjjFJBciV9pg4PTXutoU.&URL=http%3a%2f%2fpds-rings.seti.org%2fvolumes%2fVGISS_8xxx%2fVGISS_8207%2fDATA%2fC11389XX%2fC1138920_RAW.IMG
https://webmail.jpl.nasa.gov/owa/redir.aspx?C=1XwhtIvQ0UiaYs4m1oeEjlmk-361BNMIYJPbl0OcPfYgsrayTz2xKfpZjjFJBciV9pg4PTXutoU.&URL=http%3a%2f%2fpds-rings.seti.org%2fvolumes%2fVGISS_8xxx%2fVGISS_8207%2fDATA%2fC11389XX%2fC1138920_RAW.IMG
https://webmail.jpl.nasa.gov/owa/redir.aspx?C=1XwhtIvQ0UiaYs4m1oeEjlmk-361BNMIYJPbl0OcPfYgsrayTz2xKfpZjjFJBciV9pg4PTXutoU.&URL=http%3a%2f%2fpds-rings.seti.org%2fvolumes%2fVGISS_8xxx%2fVGISS_8207%2fDATA%2fC11389XX%2fC1138920_RESLOC.DAT
https://webmail.jpl.nasa.gov/owa/redir.aspx?C=1XwhtIvQ0UiaYs4m1oeEjlmk-361BNMIYJPbl0OcPfYgsrayTz2xKfpZjjFJBciV9pg4PTXutoU.&URL=http%3a%2f%2fpds-rings.seti.org%2fvolumes%2fVGISS_8xxx%2fVGISS_8207%2fDATA%2fC11389XX%2fC1138920_RESLOC.DAT
http://pds-rings.seti.org/volumes/VGISS_8xxx/VGISS_8210/DATA/C12415XX/C1241506_CLEANED.IMG
http://pds-rings.seti.org/volumes/VGISS_8xxx/VGISS_8210/DATA/C12415XX/C1241506_CLEANED.IMG

VICAR Quick-Start Guide

 38

C1138920_RAW.IMG

The original image

viewed with a

Gaussian stretch in

xvd to make the moon

visible.

r

After using RESSAR77

to remove the

fiducial marks,

viewed with a

Gaussian stretch in

xvd.

VICAR Quick-Start Guide

 39

nrsub

After subtracting the dark image
and cropping, viewed with a
Gaussian stretch in xvd.

Nrstr

After stretching, viewed

as-is in xvd.

VICAR Quick-Start Guide

 40

nrflt

After low-pass filtering, viewed
as-is in xvd.

nrfinal

After a final artifact filter,
viewed as-is in xvd.

VICAR Quick-Start Guide

 41

5. List of Programs
This is a list of the general application programs contained in the P2 library for version 2.0 of the
VICAR Open Source release.

General application programs operate on any VICAR image, subject to various restrictions. Most
of these programs are restricted to 8-bit and/or 16-bit data while a few handle the full range of
data types (32-bit integer, single and double precision floating point, complex). Most of the
programs are restricted to monochrome (single band) images while a few operate on
multispectral data.

Each program is listed only once under one of the functional areas below. Functions which deal
primarily with monochrome images appear first, followed by functions for multispectral images
and functions for graphical and tabular data.

5.1. Categories

5.1.1. Utilities

VICAR help
VICAR utilities
VICAR procedure generation
Manipulating ASCII files
Data conversion

5.1.2. Displaying Images, Text, and Graphics

Displaying images
Pixel listings and plots
Label processing & display
Text and graphics overlays

5.1.3. Generic Tools

Generating synthetic images
Image statistics
Mathematical and logical operations
Constrast enhancement
Color reconstruction
Digital filters
Fast Fourier Transforms
Image restoration
Image blemish removal
Image noise reduction/simulation
Image concatenation
Image orientation
Image magnification and reduction
Geometric transformations

VICAR Quick-Start Guide

 42

5.1.4. Image Registration and Mosaicking

Image navigation
Image registration
Map projections
Map projections of Irregularly Shaped Objects (ISOs)
Mosaic generation (IBIS)
Mosaic generation (multimission)

5.1.5. Calibrating the Camera and Target

Geometric calibration
Radiometric calibration
Photometric function

5.1.6. Miscellaneous

Atmospheric feature tracking
Astronomy
Super-resolution
Focus analysis
Elevation maps
Stereo images

5.1.7. Multispectral Data

Multispectral data utilities
Principal component transformation
Multispectral classification

5.1.8. Graphics and Tabular Data

IBIS interface file operators
IBIS graphics file operators
IBIS file conversion routines
Displaying IBIS graphics or tabular data

5.1.9. Project-Specific Programs

Cassini
Galileo
Viking Orbiter
Voyager

VICAR Quick-Start Guide

 43

5.2. Program Listing

UTILITIES

VICAR help:

NUT On-line VICAR tutorial
NUTINP Called by NUT
NUTPROMPT Called by NUT

VICAR utilities:

CHKSPACE Return amount of available space on specified disk
COMMON_SUBPDF Various sub-PDFs for use by menu-driven PDFs
COPY Copy all or part of a labeled or unlabeled image
DATETIME Print current date and time: dd-mmm-yy hh:mm:ss
RUN_ISQL Enter or delete data in Sybase catalog
TEMPNAME Append ZZZ extension to filename to make it a temporary file

VICAR procedure generation:

CNT Return number of files in a list created by SRCH
COMMENT Display comments during execution of a procedure
FORM Return image format and size as TAE variables
GETLAB Copy a VICAR label item to a TAE variable
LAB2TCL Copy VICAR label items to TAE variables
MAKESRCHLIST Output a list of all files in a directory in SRCH format
MAXMIN Compute min and max DN and ouput as TAE variables
NXT Return data for next file in a SRCH list
RESET Reset the next file pointer of a SRCH list
TRANSLOG Translate a logical name
USERNAME Return current userID
WILDCARD Find all files matching a wildcarded string

Manipulating ASCII files:
ADDTOFILE Append a string to an ASCII file
CREATEFILE Create an empty file
COLUMNAR Concatenate two ascii files left-to-right
HEADERGEN Output multiple records of an ASCII file as a single record
TABULATE Concatenate ASCII files into tab-delimited file
TYPETEXT Output ASCII text file to terminal and session log

Data conversion:

CCOMP Convert image from complex to real format or vice-versa
CFORM Convert image between data types with optional scaling
DDD2VIC Convert Mars Global Surveyor "ddd" format data to VICAR

VICAR Quick-Start Guide

 44

FITSIN Convert FITS data to VICAR format (P3)
GTGEN Create a GeoTIFF label from parameter input
GTLIST List image mapping info from a GeoTIFF label
IMG2ASCII Convert image data to ASCII text file
ISISLAB Prints PDS label and history objects of an ISIS cube
PIC2VIC Convert PIC format images to VICAR
PSCRIPT Prepare a VICAR image for output to a Postscript printer
VIC2PIC Convert VICAR images to PIC format
VTIFF Convert images between VICAR and TIFF format

Displaying images, text, and graphics

Image displays:

EDIMAGE Interactive image annotation and editing
HICCUP Create histogram file for halfword image
HISTGEN Create histogram file for byte or halfword image
MASKV Create an image display for film recording
PRINTPIX Print a grey level display of an image
QB Sequential display of a list of files (Quick Browse)
XVD Interactive image display

Pixel listings and plots:

LIST Print the DN values of an image area
EZLIST Similar to LIST, but output may be an ASCII text file
LISTBITS Print the DN values of an image area in binary
QPLOT TAE procedure which calls QPLOT2
QPLOT2 Line or spectral plots to VRDI, Tektronix, Regis, Printronix

Label processing and display:

CLEANLABEL Remove duplicate label items from an image's history label
LABEL Print or edit the VICAR label
LABLIST Print VGR or GLL SSI flight label
LABSWTCH Switch the history labels of two VICAR images
LABVFY Verify that an image label contains a specified string

Text and graphics overlays:

ADL Draw line between two points in image
CLABEL Copy label from a "CONTOUR" file to a "POLYSCRB" file
CONLAB Image contouring procedure (calls CONTOUR)
CONTOUR Create a graphics file of contours or "isolines"
FONT Superimpose text on images in various font styles and sizes
GRID Superimpose a user defined reference grid on a byte image
MAPGRID Overlay a uniform grid on an image

VICAR Quick-Start Guide

 45

MSSVIEW Draw scatterplot in center of MSS image
OVERLAY Overlay a latitude-longitude grid on an image
ZCIRCLE Zero out a circular or elliptical area of an image
See also: EDIMAGE

Generic tools

Generating synthetic images:

ELLIPSE Create synthetic images of oblate spheroids
FRACGEN Simulate elevation data via fractional brownian motion
GEN Create synthetic (ramp) image
GENTHIS Create image from input DN list
RADAGEN Synthesize a radar image from an elevation map
SPOT Synthesize images of spots of various sizes and profiles
TARGET Create test targets for optical systems of known MTFs

Image statistics:

ASCHIST Create a tab-delimited ASCII histogram file
ENTROPY Compute image entropy
HIST Print histogram of byte, integer, or floating point image
LAVE Compute mean or sigma for each line or column of an image
PIXGRAD Compute the magnitude and gradient of an image
PIXSTAT Compute statistical data in a local area about a pixel
IMGSTAT Output image representing local min, max, mean, or sigma

Mathematical and logical operations:

AVERAGE Average up to 48 images into one image
DIFPIC Compute difference between two images
F2 Perform mathematical and logical operations on images
RATIO Compute ratio between two images

Constrast enhancement:

ASTRTCHR Convert floating point images by byte via histogram scaling
FIT Convert halfword images to byte via histogram scaling
HSTRETCH Modify specific DN values of an image
STRETCH Image contrast enhancement
STRETVAR Linear contrast enhancement as a function of line number
VLOOKUP Modify DNs of B/W or multispectral images via table lookup

Color reconstruction:

COLORFIT Replace missing image of color triplet via numerical fit
COLORME Color balancing of uncalibrated RGB images

VICAR Quick-Start Guide

 46

COLORRGB Convert n multispectral images into RGB or XYZ tristimulus
COLORT Transform color triplets between RGB and other color domains
COLORT2 Transform color, like COLORT but for half/full/real data
DNTOXYY Convert multispectral images to xyY color space
GIACONDA Color transformation to reproduce specified spectra
RGB2PSEUDO Create pseudo-color rendering of an RGB color triplet
RGBTOXYY RGB to xyY color transformation
SPECTOXYY Create xyY color triplet from registered color n-tuplet
TRISTIM Compute tristimulus values and chromaticity coordinates
TRUCOLOR Color reconstruction of designated spectra
XYY2HDTV Convert xyY color triplet to RGB triplet for HDTV
XYYTOSPEC Convert an xyY color triplet to an RGB triplet
YFIT Autostretch of the tristimulus Y element of a xyY triplet

Digital filters:

APODIZE Reduce ringing on the edge of image during filtering
BOXFLT2 High-pass or low-pass filter
CONCOMP1 Removes high frequency noise components from an image
FILTER General purpose digital filter
MEDIAN Median filter
SBOXFLT Highpass filter (TAE procedure which calls BOXFLT2)
SHADY Add contour lines and/or shading to an image
SHADY2 Simulate shadows from illumination at given azimuth-elevation
TFILT High-pass filter with thresholding to prevent ringing of limb

Fast Fourier Transforms:

FFT11 1-D FFT
FFT1PIX Convert a 1-D FFT to an amplitude and/or phase image
FFT2 2-D FFT procedure (calls FFT22)
FFT22 2-D FFT
FFTADD Add 2 FFTs
FFTFIT Modify 2-D FFT to force images to have identical power spectra
FFTFLIP Translate 2-D FFT axes so DC term is in center of output
FFTMAGIC Compute amplitude of an FFT from the phase or vice-versa
FFTPIC Convert a 2-D FFT to an amplitude and/or phase image
IFFT Interactive modification of FFT
POWER Compute 1-D power spectrum of an image area
SWAP Swap the quadrants of an image or complex FFT

Image Restoration:

CLEAN Restore image by iteratively deconvolving a pt spread function
FIL2 Compute filter weights to deconvolve an image
FILTER2 Image restoration procedure (calls FIL2 and FILTER)

VICAR Quick-Start Guide

 47

MEM Non-linear deconvolution using Maximum Entropy Method
OTF1 Compute optical transfer function
PSF Extract the point spread function from an image
RESTORW TAE image restoration procedure (calls OTF1 and WIENER)
SPARSE Simulate effect of a sparse aperture
WIENER Restore an FFT image by using the Wiener noise additive model

Image blemish removal:

BLEMPIC Create image display of CCD camera blemishes
DS4 Remove 6-line striping from LandSat images
QSAR Add or subtracts constants to image areas
REPAIR Locate and interpolates over bad lines
SARGON Interpolate over polygonal regions of an image (interactive)
SARGONB Interpolate over polygonal regions of an image (batch)
ZFILL Interpolate over zero regions of an image

See also: EDIMAGE

Image noise reduction/simulation:

ADDNOISE Add gaussian noise, shot noise, or bit errors to image
ADESPIKE Remove single-pixel spikes from an image
DESPIKE Remove single-pixel spikes from an image
GAUSNOIS Create Gaussian noise image
JPEGFIX Reduce blockiness introduced by severe JPEG compression
MINFILT Radiation noise suppression
POLYNOIS Generate a noise image of specified noise spectra
REMNOISE Remove single-pixel spikes from an image
REMRAY Remove cosmic ray and radiation noise from an image
TVREG Reduce noise by Total Variation minimization

Image concatenation:

APPEND Concatenate up to 30 images vertically
MSS Concatenate up to 30 images horizontally
CONCAT Concatenate images of the same size
VICCUB Combines multiple images into one multi-band image

Image orientation:

FLOT Rotate or reflects image by 90 or 180 degrees
ROTATE Rotate an image 90 degrees
ROTATE2 Rotate an image by an arbitrary angle (calls GEOMA)

VICAR Quick-Start Guide

 48

Image magnification and reduction:

BICUBIC Integral image enlargement via cubic convolutional filter
FFTMAG Enlarge images by 2**N using Sampling Theorem
INSERT Enlarge image in line direction
SIZE Enlarge or reduce an image via bilinear interpolation

Geometric transformations (rubber sheeting):

GEOM Geometric transformation (calls LGEOM or MGEOM)
GEOMA Geometry transform of an image, randomly spaced points
GEOMV High-resolution geometric transformations on images
LGEOM Geometric transformation of an image, uniform grid
MGEOM Geometric transformation of an image, uniform grid
POLYGEOM Geometric transformation of tiepoints
TIECONV Prepare a gridded dataset for GEOM programs

Image registration and mosaicking

Image navigation:

EPHEMERIS Returns ephemeris for a planet as seen from another planet
FARENC Correct camera pointing by fitting limb
GETLL Convert line-sample to lat-lon and output to TAE variable
GETPC Output planet center line-sample coordinates as TAE variable
GSPICE Print SPICE data for an image
MAKECK Create an empty SPICE C-kernel
NAV Correct camera pointing by fitting limb, ring, or stars
NAV2 Correct camera pointing by tiepoint registration
OMC Coordinate transformation of C-matrices and position vectors
PERSLAB Store navigation data for a flight image into VICAR label
RINGORBS Generate the Ring Orbital Elements file (for NAV)
SPICE Print SPICE data for an image

Image registration:

AUTOMATCH Find matching tiepoints in a sequence of images
CORNER Locate candidate tiepoints by scanning an image for corners
LINEMTCH 1-d line matching of an image pair (correlation)
MANMATCH Find matching tiepoints in a sequence of images (interactive)
PICMATCH Find matching tiepoints in an image pair
PICREG Find matching tiepoints in an image pair (interactive)
POLYREG Perform affine transformation on a set of tiepoints
TIECONM Compute geometric distortion from randomly spaced ties
TIEPARM Compute geometric distortion parameters from tiepoints
TIEPLOT Plot tiepoints stored in an IBIS file as vector displacements
TP Find matching tiepoints in a sequence of images (interactive)

VICAR Quick-Start Guide

 49

Map projections:

GEOMREC Transform slant range radar data to ground range
MAP3 Standard cartographic projections
MAPCOORD Convert from lat-lon to line-samp or vice-versa
MAPLABPROG Store projection data into label
MAPTRAN Convert images from one projection to another
POLARECT Rectangular to polar projection and vice-versa
POLARECT2 Convert images to polar coordinates and back
POLYMAP Convert tiepoints from one projection to another
POLYPMAP Convert tiepoints from lat-lon to line-sample
PTP Project an image from one perspective to another
SINPROJ Sinusoidal projection
TRICOEF Compute coefficients for conformal and authalic projections

Map projections of Irregularly Shaped Objects (ISOs):

AREAISO Compute AUXiliary lat-lons for Irregularly Shaped Objects
AUXILIARY Compute conformal-to-planetocentric auxiliary ISO coords
EFGISO Compute E, F, and G components of projected ISOs.
MAPAUX Map projection of irregularly shaped objects (ISOs).
SNYDER Compute centric coordinates for ISOs.

Mosaic generation (IBIS):

FEATHERV Mosaic images using Moore distance feathering
GETZVAL Get average DN value from window about each tiepoint
GEOMZ Brightness transformation (rubber-sheeting of DN axis)
MASKMOS Create an image mask to aid in mosaicking
RAPIDMOS Assemble registered images into a mosaic

Mosaic generation (multimission):

FASTMOS Assemble registered images into a mosaic
IBISGCP Specify ground control points
IBISNAV Copy SPICE data to an IBIS file
IBISUPDATE Store corrected camera pointing into a C-kernel
INSECT Mosaic two images
MOSPLOT Plot footprints, overlap files, or error vectors for mosaics
NEWMOS Assemble registered images into a mosaic

Calibrating the camera and target

Geometric calibration:

FIXLOC Edit tiepoints
GETLOC Extract tiepoints for a subarea of a grid target

VICAR Quick-Start Guide

 50

GRIDGEN Synthesize image of a grid target
GRIDLOCB Locate intersections on a grid-target image
INTERLOC Locate intersections on a grid-target image (interactive)
LOCUS2 Perform a least squares fit between two tiepoint files
MARK Scribe rectangles about specified pixel locations
RADDIST Project uniform grid of tiepoints to simulate optical distortions
SKEW Linear transformation of tiepoints
XLOCUS Apply tranform (computed by LOCUS2) on grid locations

Radiometric calibration:

BLEMGEN Create blemish file for GLL SSI and Cassini ISS cameras
DC Compute dark current frame from light transfer sequence
CCDNOISE Measure noise and system gain (CCD camera)
CCDRECIP Measure shutter offset (CCD camera)
CCDSLOPE Measure light transfer slope and offset (CCD camera)
FCNPOLAR Fit polarization data to determine polarization axis of a filter
GALGEN Create radiometric and dark-current files for GLL & Cassini
LTGEN Create a light-transfer or reciprocity file
MOMGEN Compute moments for image areas of light-transfer sequence
MOMGEN2 TAE procedure to process light transfer or reciprocity data
MOMLIST Print or output to a text file contents of Light Transfer File
PICSUM Compute sum of multiple images and flags saturated pixels
SIGNAL Output light transfer data for a pixel to a text file
SRCHEDGE Get angle of image divided diagonally into light & dark areas

Photometric function:

PHODEM Demonstrate use of menu-driven PDFs
PHOPDF Contain sub-PDFs specific to each photometric function
PHOTTEST Generate synthetic data for testing PHOTFIT2
PHOTFIT2 Fit photometric function to data in catalog
PHOTFUNC Photometric function correction of flight images

Miscellaneous

Atmospheric feature tracking:

DVECTOR Draw vectors representing tiepoint displacements
MORPH Create intermediate images between two images
TPTEDT2 Identify and removes erroneous tiepoints

Astronomy:

STARCAT3 Locate and catalogs stars in an image

VICAR Quick-Start Guide

 51

Super-resolution:

SUPERRES Combine many images to create super-resolution image

Focus analysis:

BESTFOCUS Convert focus stack to best-focus image and depth map
BESTSCALE Rescale images to the same size for BESTFOCUS

Elevation maps:

LSTOXYZ Converts tiepoints to xyz planet coordinates
TOPOMAP Generate relative elevation maps from tiepoint data
TOTOPO Converts tiepoints from xyz to line-samp of topomap

Stereo images:

CORRELATE1D Compute 1-D correlated tiepoints between images
DISPARITY Combines two disparity images into radial disparity
MPFTPT1 Compute line/sample disparity of each pixel of a stereo pair
STEREOCAM Convert tiepoint locations to xyz coordinates for a stereo pair
XYZSUN Convert stereo tiepoint data of the Sun to xyz coordinates

Multispectral data

Multispectral data utilities:

HIST2D Create 2-D histogram file of multispectral data
INSERT3D Insert a band into a 3-d multispectral file
TRAN Convert multispectral data between BSQ, BIL, BIP, MSS fmts

Principal component transformation:

EIGEN TAE procedure which calls EIGENVEC and XFORM
EIGENVEC Computes principle components transformation matrix
XFORM TAE procedure which calls XFORMAP or XFORMEM

Multispectral classification:

CLUSAN Apply clustering algorithm to multispectral data
CLUSTEST Compute statistical significance of cluster in a state file
FASTCLAS Bayesian maximum likelihood multispectral classifier
STATPLT Plot a classification statistics file
STATS Compute statistics of training areas
USTATS Perform unsupervised clustering on multispectral data

VICAR Quick-Start Guide

 52

Graphics and tabular data

IBIS interface file operators:

AGGRG Form aggregates of columns in an IBIS interface file
AGGRG2 Form aggregates of columns in an IBIS interface file
EDIBIS Interactive editing of IBIS interface and graphics files
IBIS Create, copies, concatenates, prints, and deletes IBIS files
IBIS2TCL Copy IBIS tabular data to TAE variables
IBISLSQ Perform least-square fits of specified columns
IBISREGR Perform linear regression on IBIS tabular data
IBISSTAT Compute various statistics of IBIS tabular data
MF Math and logical operations on columns (FORTRAN)
MF3 Math and logical operations on columns (C)
MFD Math and logical operations on double-precision tabular data
MULTOVLY Compute n-dimensional histogram of n input images
ROWOP Delete or select rows, or make multiple copies of rows
SORT Sort rows of tabular data on one or more key columns
TRANSCOL Convert long columns of data to smaller columns
ZIPCOL Copy columns from one IBIS file to another

IBIS graphics file operators:

POLYGEN Generate an IBIS graphics file from user parameter list
GRUTIL 2-d and 3-d IBIS graphics-1 utility (append, convert)
GF Perform math and logical operations on an IBIS graphics-1 file
POLYCLIP Clip graphics elements to fit within a window
PLTGRAF Plot a graphics-1 file inside a labeled box

IBIS file conversion routines:

ACOPIN Convert an ASCII file into an IBIS table file
ARC2GRAF Convert 2-D ARC/INFO point files to IBIS Graphics-1 format
GRAF2ARC Convert IBIS Graphics-1 files to ARC/INFO format
GRAFIMG Convert image data to a gridded 3-D graphics-1 file
MARKIBIS Convert tiepoints from Mark to IBIS format or vice-versa
MSSIBIS Copy data from MSS format to interface files
OLDGEOMA2IBIS Convert (obsolete) GEOMA parameters to IBIS format
PERSPEC Convert 3D graphics-1 file to true 2D perspective file
PIXMAP Convert map coordinates in an IBIS file using a GeoTIFF label
RASTOGRAF Convert graphics from raster to IBIS Graphics 1 format
TOIBIS Convert data from image format to IBIS format
VQUIC Convert ASCII file into an IBIS file

Displaying IBIS graphics or tabular data:

PAINT Paint each region of an image a different color

VICAR Quick-Start Guide

 53

POLYPNT Convert IBIS polygon file to image format
POLYSCRB Convert a Graphics-1 file to image format
PLOT3D Plot a 3-d IBIS file
PLOTINT Plot an IBIS interface file
XYZPIC Convert a 3-D graphics-1 file into an image
ZINTERP Interpolate over random elevation data to create an image

Project-specific Programs

Cassini Mission:

TABLESEARCH TAE proc to extract point response data from a CASPRF file

Galileo Mission:

GALSOS Radiometric correction of Galileo SSI images
GLLPSF Create an SSI point spread function file
NIMSCMM2 Create a NIMS cube from Phase 2 EDRs
RVISIS2 Simplified interface for VISIS2
VISIS2 Converts GLL NIMS cubes between VICAR and ISIS formats
VISISX Converts VICAR 3-D image to ISIS Cube file and vice-versa

Magellan Mission:

SIZEMGN Resize an image (see SIZE) with Magellan-specific features

Viking Orbiter Mission:

BLEMVORB VO camera blemish removal
DROPOUT Fill in data gaps in VO images
RESLOCVO Locate reseau on Viking Orbiter images
RESSAR75 Remove reseau from Viking Orbiter images
SOS Radiometric correction of Viking Orbiter images

Voyager Mission:

VGRCDCOPY Convert a VGR image archived on CDROM to a VICAR image
VGRFILLIN Fill in data gaps in VGR (EDR) images
CAMPARAM Copy camera params from VGR label to TAE local variables
RESLOC Locate reseau on VGR images
RESSAR77 Remove reseau from VGR images
OSBLEMLOC Convert VGR blemish locations from image to object space
FICOR77 Radiometric correction of VGR images
FIXVGR Scale VGR images to correct for FICOR77 scaling error
PHOTLIST Print phase, incidence, and emission angles for a VGR image

VICAR Quick-Start Guide

 54

6. Acronym List
AFIDS- Automatic Fusion of Image Data Systems

ASTER- Advanced Spaceborne Thermal Emission and Refection Radiometer

AVIRIS- Airborne Visible/InfraRed Imaging Spectrometer

AVHRR- Advanced Very High Resolution Radiometer

COSMIC- Computer Software Management and Information Center

GeoTIFF- Georeferenced Tagged Image File Format

GOES- Geostationary Operational Environmental Satellite

GUI- Graphical User Interface

HRSC- High Resolution Stereo Camera

IBIS- Image- Based Information System

IPL-Image Processing Lab

ISIS- Integrated Software for Imagers and Spectrometers

ISS- Imaging Science Subsystem

ITAR- International Traffic in Arms Regulations

JNI- Java Native Interface

JPL- Jet Propulsion Laboratory

LROC- Lunar Reconnaissance Orbiter Camera

MDIS- Mercury Dual Imaging System

MEX- Mars EXpress

MIPL-Multimission Image Processing Lab

MODIS- MODerate resolution Imaging Spectroradiometer

NEAT-Near Earth Asteroid Tracking

NITF- National Imagery Transmission Format

OSIRIS- Optical, Spectroscopic, and Infrared Remote Imaging System

PDART- Planetary Data Archiving, Restoration, and Tools

PDF-Parameter Definition File

VICAR Quick-Start Guide

 55

PDS- Planetary Data System

ROSES- Research Opportunities in Space and Earth Sciences

TAE- Transportable Applications Executive

TCL- TAE Command Line

USGS- US Geological Survey

VICAR- Video Image Communication And Retrieval

VIDS- VICAR Interactive Display Subsystem

VIMS- Visual and Infrared Mapping Spectrometer

VMC- Venus Monitoring Camera

VMS- Virtual Memory System

VRDI- Virtual Raster Display Interface

VICAR Quick-Start Guide

 56

7. References
The following documents can be found in two places. First, they are included in the VICAR source
distribution itself, in the directory:

vos/docsource/vicar/

Second, they are available on the VICAR Open Source page:

http://www-mipl.jpl.nasa.gov/vicar_open.html

[1] VICAR File Format

[2] Building VICAR

[3] RTL Reference Manual

[4] Building and Delivering VICAR Applications

[5] VICAR User’s Guide

[6] VICAR Porting Guide

http://www-mipl.jpl.nasa.gov/vicar_open.html

