
Version 3
Elizabeth Duxbury
Danika Jensen

Oct. 14, 1994

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109

D-4186 Rev B

Copyright © 1994, California Institute of Technology. All
rights reserved. U.S. Government sponsorship under NASA
Contract NAS7-1270 is acknowledged.

PREFACE TO VERSION THREE

VICAR is an evolving software system constantly being updated
with contributions from general users and flight projects. This
makes it difficult to keep a document such as this VICAR User's
Guide up-to-date. Part of the purpose in putting this latest version
online is to enable revisions in VICAR to be more quickly
reflected in this Guide.

Several significant changes have been made in this version of the
Guide. An attempt has been made to keep the current format as
similar as possible to past versions of the Guide, but for the online
version, some changes have been made to take advantage of the
cross-referencing capabilities of the NCSA Mosaic format. It is
hoped that most of these changes will be transparent to anyone
reading a hardcopy version. An attempt has been made once again
to make the Index more useful in quickly finding critical
information.

There have also been significant changes to VICAR since Version
3 was published. Perhaps most important are those changes due to
the conversion of VICAR to enable it to run on UNIX systems.
(These changes are detailed in Section 3.1.1 for the benefit of the
experienced VMS-VICAR user.) The content of the VICAR
applications libraries has changed with the addition of many new
procs and the deletion of several obsolete or redundant ones.
Finally, the Menu mode and the New User's Tutorial are
undergoing significant changes, and have not yet been
implemented for UNIX VICAR.

This version of the VICAR User's Guide applies to:

VICAR Version 12.1
using TAE Version 5B/16B
under UNIX Version SunOS 4.1.3 or Solaris 2.3

or under VMS Version 5.4-2

ACKNOWLEDGEMENTS
This Guide would not have been completed if not for the assistance
of many members of the Image Processing Laboratory. The
authors extend special thanks to Ray Bambery, Nevin Bryant, Bob
Deen, Sandy Dumarr, Greg Earle, Tom Greer, Dave Hodges, Steve
Hwan, Sue LaVoie, Alan Mazer, Helen Mortensen, Steve
Pohorsky, Niles Ritter, Allan Runkle, Cesar Vasquez, Lisa Wainio,
Mitch White, and Gary Yagi for their assistance.

CONTENTS

1 Introduction
 1.1 Document Purpose
 1.2 Document Organization
 1.3 Conventions, Acronyms and Terms

1.3.1 Conventions
1.3.2 Acronyms and Terms

2 VICAR Documentation and References
3 Overview of VICAR
 3.1 Background

3.1.1 VICAR Changes Under UNIX
 3.2 Applications of VICAR
 3.3 System Acquisition
4 BASIC VICAR Concepts
 4.1 Entering/Exiting VICAR
 4.2 Getting Started
 4.3 VICAR Datasets

4.3.1 Dataset Names
 4.3.1.1 Temporary Datasets
4.3.2 Dataset Structure
4.3.3 Pixel Data Formats

 4.4 VICAR Labels
4.4.1 VICAR Label Structure

 4.5 Procs
5 The VICAR Environment
 5.1 VICAR Libraries
 5.2 Processing Modes

5.2.1 Interactive or Synchronous Processing Mode
 5.2.1.1 VICAR DCL Mode - VMS Systems
 5.2.1.2 VICAR USH Mode - UNIX Systems
5.2.2 Asynchronous Processing

5.2.2.1 Asynchronous Processing - VMS
Systems
 5.2.2.2 "Background" Processing - UNIX

Systems
5.2.3 Batch Processing Mode
 5.2.3.1 Batch Processing - VMS Systems
 5.2.3.2 Batch Processing - UNIX Systems

 5.3 VICAR Use of Subprocesses

 5.4 Session Customizing Procedures
5.4.1 Logon Procedures
5.4.2 Logoff Procedures

 5.5 Aborting a VICAR Command
6 VICAR User Aids
 6.1 VICAR Help

6.1.1 HELP Command
 6.2 VICAR TUTOR Mode

6.2.1 General TUTOR Information
6.2.2 TUTOR-SCREEN Mode
6.2.3 TUTOR-NOSCREEN Mode

 6.3 VICAR MENU Mode
6.3.1 General Menu Information
6.3.2 The MENUTREE
6.3.3 Creating a Menu

 6.4 Syntax Checking
 6.5 Message Interpretation

6.5.1 General Message Information
6.5.2 HELP-MESSAGE
6.5.3 "?"

7 The VICAR Image Processing Executive
 7.1 Introduction to the TAE Command Language
(TCL)

7.1.1 TCL Command Line Rules
 7.1.1.1 Abbreviations
 7.1.1.2 Line Continuation
 7.1.1.3 Labels
 7.1.1.4 Special Characters
 7.1.1.5 Special VT100 Terminal Keys
 7.1.1.6 Command Line Editor
7.1.2 Variables
 7.1.2.1 Local Variables
 7.1.2.2 Global Variables
 7.1.2.3 Assignment
 7.1.2.4 Intrinsic Variables
 7.1.2.5 Substitution and Dereferencing
7.1.3 Expressions
7.1.4 Built-In Functions
7.1.5 Error Handling

 7.2 VICAR Command Line Structure
7.2.1 Command Line Syntax
 7.2.1.1 Commands and Proc Names
 7.2.1.2 Subcommands
 7.2.1.3 Command Qualifiers

 7.2.1.4 Parameter List
 7.2.1.5 Comments
7.2.2 Parameters
7.2.3 Parameter Value Specification
 7.2.3.1 Parameter_name=value Format
 7.2.3.2 Keyword Format
 7.2.3.3 Positional Format
 7.2.3.4 Parameter Qualifiers
7.2.4 Missing or Invalid Parameter Values
7.2.5 Dynamic Parameters

 7.3 Proc Definition Files (PDFs)
7.3.1 Procedure Definition Files (PDFs)
7.3.2 Process Definition Files (PDFs)
7.3.3 Executing a PDF
7.3.4 HELP Files
7.3.5 Global PDFs
7.3.6 Compiled PDFs

 7.4 Script Files
 7.5 Tape Handling
 7.6 Session Logging
 7.7 Sample Interactive Session
8 Non-Standard Items
 8.1 Proprietary Software
 8.2 Facility-specific Hardware
 8.3 VICAR I/O Formats

8.3.1 Input/Output of VICAR Datasets
8.3.2 Output of Non-VICAR Datasets
8.3.3 Input of Non-VICAR Datasets

9 Advanced VICAR Concepts
 9.1 Dataset Structure
 9.2 VICAR Label Structure
10 Appendix
 10.1 VICAR Proc Function Definitions
 10.2 Classification of VICAR Procs by Function
 10.3 Standard VICAR Procs and their Functions
 10.4 VICAR Intrinsic Commands
 10.5 VICAR Command Qualifiers
 10.6 VICAR Intrinsic Global Variables
 10.7 MENU Mode User Operations
 10.8 TUTOR Mode User Operations
 10.9 TUTOR Mode Line Editing Keys
 10.10 Command Line Editing Keys
 10.11 Examples of Proc Definition Files (PDFs)
 10.12 Examples of VICAR Labels

 10.13 VICAR Message Explanations
 10.14 The VICAR New User's Tutorial

10.14.1 New User Tutorial Listing
11 Index

Version 3 of the VICAR User's Guide is an update of previous
versions, and the authors relied heavily on those earlier versions
for its content. The authors of Version 2 of the Guide are Susan
LaVoie, Doug Alexander, Charles Avis, Helen Mortensen, Carol
Stanley, and Lisa Wainio. The writing and HTML formatting of
Version 3 were done by Elizabeth.D.Duxbury@jpl.nasa.gov and
Danika.Jensen@jpl.nasa.gov.Last modified May 21, 1996.

1 Introduction
Contents

1.1 Document Purpose
1.2 Document Organization
1.3 Conventions, Acronyms and Terms
 1.3.1 Conventions
 1.3.2 Acronyms and Terms

1.1 Document Purpose
The VICAR User's Guide is designed to instruct the new user in
the use of the VICAR (Video Image Communication and
Retrieval) image processing system and to serve as a reference
manual for the experienced user.

This document is a facility-independent guide to both the UNIX
and VAX/VMS implementations of the VICAR system. Basic
knowledge of UNIX and VAX/VMS is assumed.

The most important and useful user information has been gleaned
from several sources, enhanced and incorporated into this

document. The VICAR User's Guide does not replace these
sources, but provides the central focus of user documentation.

1.2 Document Organization
This document has been divided into eleven sections which
introduce the VICAR system and describe its use.

1. Introduction, purpose and organization of the document;
document conventions
2. User documentation and references
3. VICAR history, applications and acquisition
4. Basic VICAR concepts: entering and exiting VICAR;
datasets; labels; procs
5. The VICAR environment: libraries; processing modes;
subprocesses; aborting commands
6. Methods for obtaining Help; Tutor and Menu modes;
explanation of how to interpret messages
7. Use of the VICAR executive: TAE Command Language;
VICAR command structure; Proc Definition Files; media handling;
session logging
8. Non-standard and non-VICAR topics: hardware and software
assumptions that apply to a subset of the VICAR applications
software; VICAR I/O formats
9. Advanced VICAR concepts: dataset and label structure
10. Appendices: VICAR application proc functional descriptions
and classification by function; Intrinsic commands; command
qualifiers; intrinsic global variables; Menu and Tutor mode user
operations; special terminal keys; Proc Definition File examples;
VICAR label examples; VICAR message interpretation; New
User's Tutorial, VICAR Sample Session
11. Index

1.3 Conventions, Acronyms and Terms

1.3.1 Conventions
Several conventions are utilized throughout this document to
ensure ease and consistency of interpretation.

1. VICAR> is the VICAR prompt.

2. Double quotes, " ", are used around special characters or
technical terms to avoid confusion with everyday meanings (i.e.,
"*" and "help").
3. Vertical dots indicate that not all of the required data are
shown.

Example: Use of vertical dots.

 Process HELP=help-location
 Parm name1 Description1
 Parm name2 Description2
 .
 .
 .
 End-proc

4. Since VICAR makes no distinction between upper and lower
case for user input, both are used in examples. (Note: On UNIX
systems, filenames are still case sensitive, so "out.img" is a
different file from "OUT.IMG".)

5. In all examples of user input in this document, VICAR
responses are in bold-faced type and user-typed text is not.
6. Brackets, [], are used to represent optional entries.

Example:

 VICAR> program [parameters]

7. Commands that can be abbreviated are shown with sqare
brackets. The brackets indicate which letters do not need to be
included as part of the command (i.e., ALLO[C] can be ALLOC or
ALLO).

8. In order to make it possible for both new and experienced
users to benefit from this document, the following words in
boldfaced type are used to designate material that is for more
advanced users.

When EXPERT appears at the beginning of a paragraph it warns
the new user that this is difficult material and should be skipped.

Material "for wizards only" is flagged by WIZARD and should be
avoided by all but the very brave.

9. Warnings to users regarding hazardous use of commands or
potentially dangerous situations are italicized and are flagged by
BEWARE.

10. USERID is used to represent the user's login id.

1.3.2 Acronyms and Terms
 Acronyms and terms which are utilized in this document are listed
below:

ASCII American Standard Code for Information
Interchange

ANSI American National Standards Institute
BARC Block Adaptive Rate Compressor
BDV Bad Data Value
BTC Block Truncation Coding
CCSI Cerritos Computer Systems Incorporated

Printronix plotting routines
COSMIC COmputer Software Management and Information
Center
DCL Digital Command Language
DDO Data Driven Object
DN Data Number
EBCDIC Extended Binary Coded Decimal Interchange Code
EDR Experimental Data Record
GUI Graphical User Interface
HIIPS Home Institution Image Processing Subsystem
IBIS Image Based Information System (a subset of VICAR

used as a geographic information system)
IPL Image Processing Laboratory
LFW Low-Full-Pixels
MDF Menu Definition File
MIPS Multimission Image Processing Subsystem
NAG Numerical Algorithms Group

Mathematical subroutine package
NIMS Near Infrared Mapping Spectrometer
PDF Proc Definition File
PDS Planetary Data System
PIXEL Picture Element
PROC Process or procedure
RTS Real Time System
SCLK Spacecraft CLocK
SIS Software Interface Specification
TAE Transportable Applications Executive
TCL TAE Command Language
UDR Unprocessed Data Record
UNIX (originally UNICS) Uniplex Information and
Computer

Systems
USH User SHell
VAX Virtual Address Extension
VICAR Video Image Communication and Retrieval
VMS Virtual Memory System
WPT Window Programming Tools

2 VICAR Documentation and
References
The following list contains various documents which comprise a
description of the VICAR system. This includes material
describing VICAR from several aspects. Novice and experienced
users, as well as programmers, will find their perspectives
represented. In addition, information concerning the MIPS facility
is provided. In-depth help is available for certain subsets of
VICAR (AMOS, BROWSE, etc.) and programs used in conjection
with it (dbView, SPICE, etc.).

Key resources for further information are listed below. This
document and most of these items are available from:

IPL Documentarian
Image Processing Software Development Group
Jet Propulsion Laboratory
Mail Stop 168-414
4800 Oak Grove Drive
Pasadena, CA 91109

818-354-0506

MIPS

* The MIPL Cookbook, R. Bambery, 7/18/86, JPL Document
D-4312 (This version is obsolete; its function will hopefully be
replaced in the near future.)
* Tutorial on the Use of the New MIPS System, (includes a
section on "Using VICAR under UNIX")
TAE

* TAE Command Language (TCL) Programmer's Manual,
Version 5.2, Century Computing, 12/92
* TAE Command Language (TCL) User's Manual, Version 5.2,
Century Computing, 12/92
VICAR

* An Introduction to the VICAR Image Processing Executive,
D. Stanfill, M. Girard, 10/8/86, JPL Document D-4309
* An Introduction to VICAR, G. Bothwell, 5/89, JPL Document
D-4379
* MIPL Mathematics Libraries Used In The VICAR System, S.
Pohorsky, 4/87, JPL Document D-4377
* MIPL VICAR Common Plotting System - Software User
Guide, L. Bynum, 2/10/87, JPL Document D-4375 (supported for
VMS VICAR only)
* MIPL VICAR Installation Guide, R. Deen, 6/4/93, JPL
Document D-4310, Version 4D/15F, (Part 1 - VMS, Part 2 -
UNIX)
* MIPS Delivery 12.0 System Release Description Document,
Mitchell White, 1/5/94, JPL Document D-11880
* The VICAR File Format, R. Deen, 9/25/92, JPL IOM
IPSD:384-92-196
* The VICAR Image Processing System - general online
information about VICAR
* VICAR PDF Files With HTML Help (Online help for VICAR
PDFs.)
* The VICAR Porting Guide, R. Deen, 8/15/94, JPL Document
D-9395
* VICAR Run-time Library Reference Manual, Version 13J, D.
Stanfill, 3/3/89, JPL Document D-4311
AMOS

* AMOS User's Guide, G. Yagi, 4/17/89 (HTML formatting
incomplete)

BROWSE

* BROWSE Reference Card, JPL Document D-6235
* User Guide for Program Browse, R. Stagner, 1/1/86, JPL
Document D-2766
CATALOG

* Accessing Information From the Voyager and Galileo
Catalogs, (Not Available Yet)
IBIS

* Automated Mosaicking of Planetary Imagery: The
VICAR/IBIS Approach, E. Barragy and F. Evans, 6/15/88, JPL
Document D-5529
* IBIS Class Library - Guidelines for Creating IBIS-based file
formats, Niles D. Ritter, 6/2/94
* IBIS Subroutine Library Programmers' Guide , Niles D.
Ritter, 6/2/94, JPL Document D-11944
* Image Based Information System White Paper, N. Bryant, et
al, 1/9/85
MRPS

* Multiple Recorder Production System User Guide Version
3.2, Bambery, Capraro, Klein, Runkle, & Wainio, 4/23/93, JPL
Document D-4383
SPAM

* Spectral Analysis Manager Version 4, SPAM, A. Mazer, et.
al., 10/1/88
SYBASE

* dbq User's Guide, Version 1.2, , Rector &Jacobson, 6/10/95
(PostScript format)
* dbView - A Database Access Tool, Version 1.5, Rector,
Jacobson &Young, 5/10/95 (PostScript format)

VIDS

* VIDS Quick Reference Card, VIDS Version 1B, JPL
Document D-5970
* VIDS User's Guide, VIDS Version 3D, R. Deen, 9/1/89, JPL
Document D-5970
VRDI

* VRDI User's Reference Guide, Version 3, Paul Bartholomew,
9/1/89, JPL Document D-5100 (.dvi format)
Other

* Math 77 - A Library of Mathematical Subprograms for
Fortran 77, Release 4.0, JPL Supercomputing and Computer
Mathematics Support Group, 5/92, JPL Document D-1341
* MIPS Map Projection Software Users' Guide, Version 1.1,
Justin McNeill, Jr., 7/94, JPL Document D-11810

3 Overview of VICAR
Contents

3.1 Background
 3.1.1 VICAR Changes Under UNIX
3.2 Applications of VICAR
3.3 System Acquisition

3.1 Background
VICAR is a set of computer programs and procedures designed to
facilitate the acquisition, processing and handling of digital image
data. The VICAR image processing language was defined by JPL
employees Stan Bressler, Howard Frieden and Fred Billingsley,
and implemented in 1966 at the Jet Propulsion Laboratory to
process image data produced by the planetary exploration program.
The software package was originally designed for operation with
the IBM 360/44 Programming System (44PS) and was later
modified to run with the IBM OS/360 operating system. In the
early 1980's VICAR underwent a major revision to run under the
VMS operating system on the VAX series of Digital Equipment
Corporation computers. Now, in the early 1990's, VICAR is once
again undergoing a major revision and will soon be fully
operational under both the SunOS and Solaris UNIX operating
systems.

For its command-line interface, VICAR makes use of the
Transportable Applications Executive (TAE) that was developed
by the NASA Goddard Space Flight Center. This version of
VICAR makes use of several enhancements to TAE, which should
be included with your version of VICAR. Several VICAR
programs may not run without these enhancements.

The VICAR executive is a body of software that forms the
interface between the user, the library of application programs and
procedures, and the computer's operating system. The VICAR
executive does not replace the host computer's operating system;
instead, it overlays the host resources. The objectives of the
VICAR executive are to:

* standardize the user interface to application programs and
procedures
* provide an interface that can be easily understood and used
by experts and non-experts
* shield the user from the host operating system by making
device-specific details transparent to the user (e.g., display
devices)
* simplify programming for future expansions

VICAR's application library contains an extensive assortment of
programs and procedures to perform a wide variety of functions
(Appendices 10.1, 10.2 and 10.3). These programs are written in
standard programming languages, FORTRAN, C and C++, with
small segments in VAX assembler and array processor code (not
portable code).

The user interfaces with the VICAR executive via a series of TAE
Command Language (TCL) statements (Section 7.1). Through
TCL, the user directs VICAR to invoke the programs, procedures
and commands to perform the analytical and housekeeping
activities necessary to complete a required task.

Programs interface with the VICAR executive via a standard set of
subroutines that perform image, label and parameter processing
plus control several external devices such as display devices and
printers (Figure 3.1). The interface is known as the VICAR Run-
time Library (see the VICAR Run-time Library Reference Manual).

Other libraries exist that provide access to databases, external
devices such as display devices and printers, etc. The subroutines
are designed to reduce some of the routine labor involved in
writing an application program.

Because of its modular architecture and portability, the VICAR
system will continue to grow. New capabilities are being added to
take advantage of new technology, to meet the demands of the
user, and to provide support for new application areas.

 Figure 3.1 VICAR Program Interface

3.1.1 VICAR Changes Under UNIX
For the most part, the changes to VICAR that enable it to run on
the UNIX operating system should be transparent to the user.
However, there are a few things that have changed that the user
should be aware of. These differences between the VAX/VMS and
UNIX VICAR systems are covered in the following subsections:

* asynchronous processing - 5.2.2
* batch processing - 5.2.3
* case sensitive dataset names - 4.3.1
* case sensitive proc names - 7.3
* DCL / USH mode - 5.2.1
* definition of ulogon and ulogoff files - 5.4.1 and 5.4.2
* processes and subprocesses - 7.2.1.1
* session logging problems - 7.6
* tape handling - 7.5
* temporary files - 4.3.1.1

There is also an NCSA Mosaic page, Using VICAR under UNIX,
detailing the differences between VAX/VMS and UNIX VICAR.

3.2 Applications of VICAR
VICAR's application has expanded over time and now supports
image processing for many disciplines: planetary imaging,
astronomy, earth resources, land use, biomedicine and forensics.
Facilities using VICAR are world-wide and include: universities,
the military, research institutions, aerospace corporations,
commercial/industrial companies and the Galileo HIIPS (Home
Institution Image Processing Subsystem) sites.

3.3 System Acquisition
VICAR is available to organizations through the Computer
Software Management and Information Center (COSMIC):

COSMIC
Software Information Services
Computer Services Annex
The University of Georgia
Athens, Georgia 30602

706-542-3265

4 Basic VICAR Concepts
Contents

4.1 Entering/Exiting VICAR
4.2 Getting Started
4.3 VICAR Datasets
 4.3.1 Dataset Names

4.3.1.1 Temporary Datasets
 4.3.2 Dataset Structure
 4.3.3 Pixel Data Formats
4.4 VICAR Labels
 4.4.1 VICAR Label Structure
4.5 Procs

In this section, the user is introduced to some of the fundamental
concepts of the VICAR image processing system. The new user
will learn how to enter and exit VICAR and be introduced to
VICAR datasets, labels and "procs". An understanding of these
concepts is essential to effectively use VICAR and is assumed in
subsequent sections.

4.1 Entering/Exiting VICAR
A VICAR session starts when a user invokes the VICAR executive
by typing the command vicar at the prompt (% or $).

Syntax:

 % vicar (UNIX)
or
 $ VICAR (VMS)

The user is then prompted for a VICAR command (Section 7.1)
with a VICAR prompt, VICAR>.

The session ends when a user exits VICAR by typing the
command exit at the VICAR prompt.

Syntax:

 VICAR>exit

The user is then returned to the UNIX shell or DCL.

4.2 Getting Started
Once in VICAR, a user is able to execute VICAR commands
(Section 7.1) using the following command line syntax. Each
required and optional term is explained in Section 7.2.

Syntax:

 VICAR>name[-subcommand] [|qualifiers|]
[parameter_list] +
 VICAR>+[comments]

The most common and simplest form of a command line consists
only of the proc or command name followed by a list of
parameters.

Syntax:

 VICAR>name[-subcommand] [parameter_list]

The following are examples to show how most procs and
commands are invoked.

Example: Try these and see what happens.

 VICAR>gen a 10 10
 VICAR>list a
 VICAR>usage (should be available on UNIX with
V12.2)
 VICAR>show

For those anxious users who would like to jump right in, we
suggest invoking the Menu system (Section 6.3) or going through
the New User Tutorial (NUT - Appendix 10.14).

Syntax: Invoking the Menu mode.

 VICAR>menu

4.3 VICAR Datasets
A VICAR dataset is a file with fixed length records (Section 4.3.2).
This dataset can be categorized as image data, which is a digital
representation of a visual "picture", or as non-image data. The
dataset structure for both types of data is the same, thus
simplifying the VICAR interface.

4.3.1 Dataset Names
The VICAR user should name disk datasets with care.

BEWARE Unlike the VAX/VMS operating system, the UNIX
operating system is case sensitive. While VICAR commands are not
case sensitive, the filenames still are. Therefore, planet.img and
PLANET.IMG are two different files on a UNIX system.

BEWARE VICAR users should avoid using system assigned
logical names (on VMS systems) or environment variables and
aliases (on UNIX systems) for dataset names. Assigned logical
names can be obtained by typing the SHOW LOGICAL command in
DCL,

Syntax:

 $ SHOW LOGICAL

or setenv and alias in UNIX.

Syntax:

 % setenv
 % alias

BEWARE When VICAR is required to write an output dataset, the
VICAR executive I/O routines will check the directory for an
existing dataset of the same name. If one exists, it will write the
new dataset directly over the old dataset instead of creating a new
version. For example, if a dataset named over.byt was created at
10:15, and another image with the same name was created at
10:18, there would be only a single entry in the current directory:

UNIX:

 -rw-r--r-- 1 edd 10400 Aug 5 10:18
over.byt
not
 -rw-r--r-- 1 edd 10400 Aug 5 10:18
over.byt
 -rw-r--r-- 1 edd 550 Aug 5 10:15
over.byt.old

VMS:

 OVER.BYT;1 21 5-AUG-1994
10:15:34.38
not
 OVER.BYT;2 21 5-AUG-1994
10:18:41.23
 OVER.BYT;1 2 5-AUG-1994
10:15:34.38

BEWARE On VMS systems, when a file is overwritten, the space
allocation is updated, but the creation date is not. On UNIX
systems, both are updated.

4.3.1.1 Temporary Datasets
Temporary files are special files that are deleted when a user logs
off. Under the old VMS VICAR, temporary files were specified by
leaving off the filename extensions and assigning instead a .Zxx
extension, where xx was based on the process ID. While that
approach still works under VMS, files that begin with a plus sign
(+) will now be recognized as temporary files on both UNIX and
VMS systems.

Under the old system, temporary files were distinguised only by
their name, and could be generated anywhere. The new style is to
collect them all in one directory. Prepending a plus sign (+) to the
name tells the VICAR RTL to put the files in the temporary

directory. This directory is pointed at by the $VTMP environment
variable in UNIX, and the VTMP: rooted logical name in VMS.
VTMP is set up by vicset2 for both systems. (It normally points at
/tmp/username for UNIX and a scratch directory for VMS). On
VMS machines, because VTMP: is a rooted directory, accessing the
directory outside of VICAR is a little awkward; you must use
vtmp:[000000].

BEWARE The automatic deletion of the /tmp/username directory
contents has not yet been established in UNIX VICAR. Therefore,
in order to delete those files when you exit VICAR, you will need to
place a ush /bin/rm /tmp/username/* command in your
ulogoff.pdf. (See Section 5.4.2 for details on how to do this.)

Subdirectories of VTMP are permitted. Under UNIX, they are
referenced by +sub_dir/file, while under VMS, they are
referenced by +[sub_dir]file. The subdirectories are not
automatically created; they must be created in advance using
mkdir $VTMP/sub_dir under UNIX and cre/dir
vtmp:[sub_dir] under VMS. Because of these differences, the use
of subdirectories is not portable between systems.

Currently, all processes using the same login id share the same
temporary directory. This may be changed in the future so
concurrent independent jobs will have separate directories. In the
meantime, a workaround can be used, which is to redefine VTMP to
use a process-specific directory name.

4.3.2 Dataset Structure
A standard structure has been established for VICAR datasets and
all VICAR programs operate with this structure by calling standard
interface subroutines. (See the VICAR Run-time Library Reference
Manual and The VICAR File Format.)

A VICAR dataset is a file of fixed-length records consisting of five
parts:

* VICAR label (primary label)
* binary label header - optional
* binary label prefix - optional
* pixel data
* end-of-dataset label (EOL) - optional

Although the exact structure of a VICAR dataset varies depending
on the presence of the three optional parts (binary label header,
binary label prefix, and EOL), all VICAR datasets follow the same
structure.

The VICAR label is an ASCII string containing information
describing the size, origin, processing history and attributes of the
dataset.

The binary label header and prefix are optional areas for storing
information about a dataset in free form binary format.

The pixel data portion of the dataset is made up of samples (pixels)
of specified data format (Section 4.3.3). The data dimensions are
described in terms of "number of samples" (NS - record length),
"number of lines" (NL - number of records of length NS), and
"number of bands" (NB - number of NL x NS data planes).

The end-of-dataset label is an optional area for continuation of the
VICAR label.

For a more comprehensive discussion of dataset structure, refer to
Section 9.1.

4.3.3 Pixel Data Formats
Each sample of a dataset contains the same number of bytes, as
defined by the FORMAT item in the VICAR label (Section 9.2). The
allowed values for FORMAT and the characteristics of these pixel
format types are defined in the following table.

Table 4.3.3

 Bytes Bits
 Format per per Description

 Sample Sample

 BYTE 1 8 unsigned, binary integer
 (data range: 0 to 255)

 HALF 2 16 signed, binary integer
 (data range: -32,768
 to +32,767)

 FULL 4 32 signed, binary integer
 REAL 4 32 floating point
 COMP 8 64 a pair of REAL values
 DOUB 8 64 double precision floating

 point

Note: There may still be a few programs which use the old
convention of WORD instead of HALF, and COMPLEX instead of COMP.
VICAR will continue to support these programs until they are
converted to use the proper formats.

4.4 VICAR Labels
A VICAR label contains dynamic information that describes the
size, origin, processing history and attributes of the associated
dataset. All VICAR application programs are designed to read

information from the VICAR labels of the input datasets and
dynamically update them.

All VICAR datasets must be in "VICAR format" which means
they are required to have a standard VICAR label in order to be
processed. Data received from other facilities with "foreign" (non-
VICAR) formats require a special purpose program, called a
"logging" program, to read and convert the data into VICAR
format (Section 8.3.3).

4.4.1 VICAR Label Structure
A VICAR label is an ASCII string composed of label items which
are keyword=value pairs separated by spaces.

Syntax:

 keyword=value

where: keyword is a text keyword that
identifies

 the label item

 value is the information portion of the
 label item; may be of type string,
 integer, real, or double, and may be
 multi-valued

Examples: Possible keyword=value pairs.

NL=800
FORMAT='HALF'
SIZE=(1,1,800,800)
A VICAR label contains 3 different classes of keyword=value label
items:

* system
* property
* history
The system portion consists of those items that are independent of
the history of the dataset. These items include: size of the image,
its organization, its pixel format, host type and items indicating the
existence of the optional sections of the dataset.

The property portion of the label contains items that describe
properties of the image in the image domain, such as the map
projection, lookup table, and latitude/longitude information.

The history label portion consists of information relating to the
processing history of the data. Each time a program processes a
dataset, VICAR adds history items to the label. The history items
include: processing task name, user's identification, processing
date and time. Thus, a sequence of subsets are recorded
chronologically in the dataset label.

For a detailed description of the VICAR label structure, refer to
Section 9.2. For examples explaining how to list labels, see
Appendix 10.12.

4.5 Procs
When commanding VICAR, the user either issues intrinsic
commands or invokes procedures or processes. Intrinsic commands
are predefined operations used to manage a session. A procedure is
a collection of VICAR commands that may be executed as one
function. A process is a program which gets activated by VICAR.

Procedures and processes are collectively referred to as "procs"
because they are identical in invocation syntax. Therefore,
throughout this document "proc" will be used whenever it is not
necessary to distinguish between procedures and processes
(Section 7.3).

5 The VICAR Environment
Contents

5.1 VICAR Libraries
5.2 Processing Modes
 5.2.1 Interactive or Synchronous Processing Mode

5.2.1.1 VICAR DCL Mode - VMS Systems
5.2.1.2 VICAR USH Mode - UNIX Systems

 5.2.2 Asynchronous Processing
5.2.2.1 Asynchronous Processing - VMS Systems
5.2.2.2 "Background" Processing - UNIX Systems

 5.2.3 Batch Processing Mode
5.2.3.1 Batch Processing - VMS Systems
5.2.3.2 Batch Processing - UNIX Systems

5.3 VICAR Use of Subprocesses
5.4 Session Customizing Procedures
 5.4.1 Logon Procedures
 5.4.2 Logoff Procedures
5.5 Aborting a VICAR Command

Within the following section, different aspects of the VICAR
environment will be covered. The user will be introduced to the
VICAR Library, processing modes, and subprocesses. The user
will learn how to customize a VICAR session and abort a VICAR
command. The novice user should note that several concepts
presented in this section are explained in more detail later on in
this document.

5.1 VICAR Libraries
Seven libraries contain the executive, applications and system
routines within VICAR. Each library is known by its system-wide
logical name or environment variable (pointing to a system sub-
directory).

 LIBRARY CONTENTS
 VMS UNIX
 V2$LIB $V2LIB VICAR executive routines
 VIDS$LIB $VIDSLIB VICAR system routines
 TAE$UTIL $TAEBIN/TAEPLAT Various system
utilities
 R1LIB $R1LIB Application procs
 R2LIB $R2LIB Application procs
 R3LIB $R3LIB Application procs
 M2LIB$TAEMENU Menus

Three libraries are available for application procs so that a facility
may segregate its procs as it chooses.

VICAR establishes a default search hierarchy containing these
seven libraries, as well as the user's current default directory. A
change of the current default directory after entry into VICAR is
not reflected in the search hierarchy. The user may bypass all such
searches by explicitly prefixing the proc name with the library
name and a colon (e.g., R2LIB:STRETCH).

The user may display the currently established search hierarchy at
any time with the command show (Appendix 10.4). The default
hierarchy is listed below with the search being from top to bottom.

Example: Show user's library hierarchy.

VMS: Note the location of the user's current default directory is
UD:[USERID].

 VICAR>SHOW

 User Library ($USERLIB):
 UD:[USERID]

 Application Libraries ($APLIB):
 liblst:-cpd
 liblst:-pdf
 r3lib:-cpd
 r3lib:-pdf

 System Library ($SYSLIB):
 TAEPDF

UNIX:

 VICAR>show

 User Library ($USERLIB):
 .

 Application Libraries ($APLIB):
 $V2LIB
 $VIDSLIB
 $R1LIB
 $R2LIB
 $TAEBIN/$TAEPLAT
 $R3LIB

 System Library ($SYSLIB):
 $TAEPDF

On VMS systems, liblst is a logical name which points to all the
VICAR libraries.

Example: Show user's library hierarchy.

 VICAR>DCL SHOW LOGICAL LIBLST

 "LIBLST" = "V2$LIB" (LNM$PROCESS_TABLE)
 = "VIDS$LIB"
 = "R1LIB"
 = "R2LIB"
 = "$TAEUTIL"

Within each library, compiled PDFs (file type .cpd) are given
preference over slower, uncompiled PDFs (file type .pdf).
Therefore, a program which has a .cpd and a .pdf will always
have its faster version chosen. See Section 7.3.6 for more
information on compiled PDFs.

This default hierarchy is easily altered either with the use of the
intrinsic command setlib (Appendix 10.4), or within the user's
ULOGON procedure (Section 5.4.1).

Example: Place starlib: in front of the current library list and
display.

 VICAR>setlib (starlib:,*)
 VICAR>show

 User Library ($USERLIB):
 .

 Application Libraries ($APLIB):
 starlib:
 $V2LIB
 $VIDSLIB
 $R1LIB
 $R2LIB
 $TAEBIN/$TAEPLAT
 $R3LIB

 System Library ($SYSLIB):
 TAEPDF

Example: Delete starlib: from the current library list and
display.

 VICAR>setlib-delete starlib:

 VICAR>show

 User Library ($USERLIB):
 .

 Application Libraries ($APLIB):
 $V2LIB
 $VIDSLIB
 $R1LIB
 $R2LIB
 $TAEBIN/$TAEPLAT
 $R3LIB

 System Library ($SYSLIB):
 TAEPDF

5.2 Processing Modes
The user has several types of processing modes available within
VICAR. Each mode is described in detail within this section.

* Interactive/Synchronous processing mode
* Asynchronous processing mode
* Batch processing mode

5.2.1 Interactive or Synchronous Processing Mode

When a user communicates directly with VICAR by means of a
terminal, and VICAR immediately acknowledges and executes the
user's requests, the user is in the "interactive processing mode".
Within the interactive session the user might use:

* The Tutor mode - to learn more about procs and the
parameters associated with them (Section 6.2)

* The Menu mode - to select or execute application procs
(Section 6.3)
* VICAR Command mode - to execute procs or intrinsic
commands (Section 7.1)
* VICAR DCL or USH mode - to execute DCL or shell
commands (see below)

5.2.1.1 VICAR DCL Mode - VMS Systems
On VMS systems, the user has the ability to execute DCL
commands without leaving the VICAR environment. The user can
execute a single DCL command, or actually enter the DCL mode
while still within VICAR.

In the first case, the user is able to execute a one line DCL
command by typing DCL and the command.

Example: Execute a DCL command from VICAR.

 VICAR>DCL SHOW DEV MTA0

If the user wanted to do something in DCL that requires more than
a single command line, a second method is available. If, for
example, the user wanted to send a mail message or edit a file, DCL
would be typed at the VICAR prompt. The user would then receive
a new prompt, _$, indicating that the DCL mode of VICAR had
been entered.

Syntax: Enter VICAR's DCL mode.

 VICAR>DCL
 _$

Within this mode the user is able to do almost everything that
could be done in the normal DCL mode. Some DCL programs may
not work in VICAR's DCL mode.

The normal VICAR mode can be re-entered by typing EXIT, VICAR
or Control-Z.

Syntax: Return to VICAR from DCL mode.

 _$ EXIT
 VICAR>

5.2.1.2 VICAR USH Mode - UNIX Systems
Similarly, on UNIX systems, the user has the ability to execute
UNIX shell commands without leaving the VICAR environment
by typing ush at the command line. (USH stands for User SHell.)
However, ush should be used much less frequently than dcl is,
because in a windowing environment it makes more sense to open
another window than to suspend VICAR in order to execute shell
commands. The ush command should be used primarily in procs
rather than interactively.

Example: Execute a USH command from VICAR.

 VICAR>ush df

Syntax: Enter VICAR's USH mode.

 VICAR>ush
 %

The 'shell' that is invoked is the command interpreter 'sh' or 'csh' as
defined by the symbol SHELL when you logged in. You may
redefine the value of SHELL from 'sh' to 'csh' or vice versa before
invoking TAE.

The normal VICAR mode can be re-entered by typing Control-D,
or exit at the shell prompt.

Syntax: Return to VICAR from USH mode.

 % exit
 VICAR>

BEWARE Changing the default device/directory via the shell
command cd while in USH mode or terminating a USH command
with a backslash (\) will cause TAE to malfunction.

5.2.2 Asynchronous Processing
EXPERT The Asynchronous processing mode allows a user to
execute a proc in a separate subprocess without interfering with the
user's current interactive session. This mode may sometimes be
preferable to the Batch mode because the separate subprocess runs
simultaneously with, and at the same priority as, the interactive
session. The user's interactive environment is duplicated in the
asynchronous subprocess, thus relieving the user from having to
redefine commands and globals. More than one asynchronous job
may run at the same time. Once submitted, the job is executed
immediately.

EXPERT Because asynchronous jobs are executing in a separate
subprocess, they cannot directly communicate with the user's
terminal. However, they may communicate indirectly by

requesting additional parameter inputs. See the TAE Command
Language User's Manual and Section 7.2.5 for further information
on these "dynamic parameters".

5.2.2.1 Asynchronous Processing - VMS Systems
EXPERT For asynchronous jobs run on a VMS system, the
VICAR runstream information is written into a log file named
PROCNAME.TML.

Example: Submit TESTGEN.PDF as an asynchronous job.

 VICAR>TESTGEN|RUNTYPE=ASYNC|
 [TAE-ASYNCJOB]Asynchronous job 'TESTGEN' initiated.

The user may check on the status of the job with the intrinsic
command SHOW-ASYNC.

Example: Monitor the progress of TESTGEN

 VICAR>SHOW-ASYNC

NAME PROC STATE SFI SKEY

TESTGEN TESTGEN ACTIVE 0 TESTGEN

BEWARE The user should not exit a VICAR interactive session
while asynchronous jobs are executing. If this happens, all
asynchronous jobs will be aborted.

BEWARE The user is also advised to avoid using tape operations
within the Asynchronous mode until a known bug can be corrected.
Tape drives can be successfully allocated, mounted, written or
read. However, the tapes cannot be successfully dismounted and/or
remounted within the Asynchronous mode.

5.2.2.2 "Background" Processing - UNIX Systems
VICAR running on UNIX systems does not have an "asynchronous
mode"; given that a user can have several windows open at the
same time, it is usually unnecessary. However, processing jobs in
the "background" is similar in concept.

To do this, your proc will need to be submitted from the shell
prompt.

Example: Submitting a VICAR proc from the shell prompt. (Note:
this only works on SunOS, not Sun Solaris systems.)

 % cat test.pdf
 Procedure !test
 Body
 slogon
 gen out.img 10 10
 label-list out.img
 ush ps
 End-proc
 % taetm test > test.log &
 [1] 9147

The slogon statement in the proc after the Body command is
necessary if the proc is going to be run from the UNIX shell
prompt. However, it may not be present when running the proc
from the VICAR command line. The > sign redirects the output
from the proc to the file test.log, rather than to your screen.

(There is currently a bug in VICAR, such that the output is not
written to the output file in the correct order. This should be fixed
in future versions.) The ampersand (&) forces the job into the
background. Typing fg at the prompt will bring the job back into
the foreground.

5.2.3 Batch Processing Mode
The user may wish to execute a proc in batch. Batch processing is
achieved by means of submitting a file, commonly referred to as a
job, to a batch queue which will create the proper environment to
execute a proc. Upon submitting the file, the user relinquishes
control of the job to the operating system, thus freeing the terminal
and allowing the user to continue with other tasks. The user may
check on the status of the job with the intrinsic command SHOW.

BEWARE The default directory for a batch job is the directory
from which the submittal occurred. If submitted from a
subdirectory, all file names should be fully qualified because this
subdirectory may not exist on all disks referred to in the job.

5.2.2.1 Batch Processing - VMS Systems
EXPERT There are several ways to invoke batch processing in
VICAR on VMS systems. This section will address the VAX/VMS
default batch queue, SYS$BATCH. If this queue is not on the user's
system, consult the local system manager for information on what
is available.

EXPERT One way to create a batch process is to use the intrinsic
command BATCH-SUBMIT (Appendix 10.4). After Tutoring on a
desired proc and performing a Tutor SAVE (Appendix 10.8) on the
parameter values selected, the user can submit a job with the

BATCH-SUBMIT command. This can be done in a Tutor session on
BATCH-SUBMIT or interactively.

Syntax:

 VICAR>BATCH-SUBMIT PROC=proc_name +
 VICAR>+ SAVEFILE=savefile_name QUEUE=queue_name +
 VICAR>+ STDOUT=output_file

Example: After specifying parameters in Tutor on proc GEN, submit
to batch queue.

 VICAR> BATCH-SUBMIT PROC=GEN.PDF SAVE=GEN.PAR
 Job 2038 submitted to queue SYS$BATCH

later:

 Job GEN (queue SYS$BATCH, entry 2038) completed

EXPERT Another method for submittim a job is to use the
command qualifier RUNTYPE (Section 7.2.1.3). Specifying a valid
queue_name or NORUN will produce two different submitting
techniques. Specifying SYS$BATCH as the queue_name causes the
job to be automatically placed in that queue and executed.

Example: Submit proc TESTGEN to batch queue SYS$BATCH

 VICAR>TESTGEN |RUNTYPE=(BATCH, SYS$BATCH)|
 Job 2039 submitted to queue SYS$BATCH

 VICAR>SHOW-BATCH SYS$BATCH
 Batch queue MIPL1_SYS$BATCH, on MIPL1::

Jobname Username Entry Status

TESTGEN USERID 2039 Executing

later:

 Job TESTGEN (queue SYS$BATCH, entry 2039) completed

EXPERT Specifying NORUN as the queue name disables the act of
job submittal. Instead, a job file is created containing all
commands needed to execute the proc in batch. This method
allows the user to issue the DCL SUBMIT command with any or all
of its associated qualifiers, rather than accepting the VICAR
defaults.

Example: Create the job file for TESTGEN proc before submitting it.

 VICAR> TESTGEN|RUNTYPE=(BATCH,NORUN)|
 Created batch job file 'TESTGEN.JOB'.

EXPERT The .JOB file (TESTGEN.JOB for this example) would
then be submitted using the DCL SUBMIT command, unless other
provisions have been made by the system manager.

Example: Submit TESTGEN.JOB to SYS$BATCH queue.

 VICAR>DCL SUBMIT/NOPRINT/NOTIFY TESTGEN.JOB
 Job TESTGEN (queue SYS$BATCH, entry 2041) started on
SYS$BATCH

later:

 Job TESTGEN (queue SYS$BATCH, entry 2041) completed

EXPERT Upon completion of a batch job, the user can access a
file containing all of the processing information collected during
the batch job execution. The log file is located in the directory
from which the job was submitted, and it is called
PROCNAME.LOG (TESTGEN.LOG for the above example).

EXPERT The user may also delete a batch job at any time.

Syntax:

 VICAR>BATCH-DELETE QUEUE=queue_name JOBID=xxx

5.2.3.2 Batch Processing - UNIX Systems
Formal batch processing does not exist on UNIX systems at the
current time. However, it is possible to submit a job to run at a
later time, perhaps when the system load will be lower. This may
be done by creating a shell script to initiate your proc. This shell
script is submitted as a "batch" job by using the UNIX at
command. (The UNIX cron command could also be used.)

Example: Use of the at command on a SunOS system. (Batch
processing doesn't work on Solaris systems currently, but when it
does, be aware that the at command has a slightly different syntax
on those systems.)

 % cat submit_test.sh
 #!/bin/sh

 taetm test
 % at 23:00 submit_test.sh
 job 11719 at Tue Aug 9 23:00:00 1994

(Remember to turn the execution permission for your shell script
on using the UNIX command chmod u+x submit_test.sh). You
will receive a mail message containing the output from your job
when it is completed. As stated above in Section 5.2.2.2, there is
currently a bug in the output files from these batch jobs.

5.3 VICAR Use of Subprocesses
 This section is relevant for VMS systems only.

WIZARD The VICAR executive makes use of VMS subprocesses
to establish environments and isolate functions. This discussion is
intended to clarify how a user's session is being supported under
the VMS operating system.

WIZARD A user logged in under VMS has a process associated
with the session, e.g., process name PRCNM. Entering the command
VICAR starts a VMS subprocess with a process name PRCNM1.
This subprocess is the environment under which all VICAR
operations are handled. The VICAR EXIT command returns the
user to the parent VMS process and deletes the subprocess and all
its descendent subprocesses.

WIZARD In the case of a batch job submittal (Section 5.2.3) from
VICAR, a separate VMS process is initiated. The name of the
submitted procedure PDF is taken as the process name of the batch
job, e.g., MYPDF. When the job begins to execute, a subprocess
(MYPDF1) is created as the environment from which the VICAR
commands are executed. Both process and subprocess, of course,
go away at job termination.

WIZARD Asynchronous processes (Section 5.2.2) are handled
similarly. They differ from batch jobs in that a subprocess is
initiated under which a second subprocess is created for the
VICAR environment. The process name of the first subprocess is
created by concatenating the eight character Process ID number of
the VMS process with the first four characters of the PDF being
run and appending a character zero. Therefore, the first subprocess
may have a process name like 22058225IMAG0. The second
subprocess gets that name with a "1" appended to it.

WIZARD The following diagram illustrates the relationships of
the VMS processes and subprocesses utilized by VICAR.

WIZARD Because of this interesting relationship of processes and
subprocesses, a user must realize that observing the progress of a
process with a DCL SHOW SYSTEM command, for instance, may
be meaningless because most of the action is occurring within one
or more subprocesses.

WIZARD Normally, actions performed in DCL mode of VICAR
will take place in the subprocess. It is possible, however, to affect
the parent process as well (see Section 7.2.1.1 for more discussion
in this area). DCL commands which allow the /JOB qualifier affect
both the parent and the subprocess when the qualifier is present.

Example: Define and use a logical name for a parent and
subprocess.

 VICAR>DCL DEFINE/JOB A UD:[USERID]
 VICAR>ENABLE-SCRIPT A:GEOMIT.SCR

5.4 Session-customizing
Logon and logoff procedures are used by VICAR to create the
proper environment. VICAR invokes its own logon and logoff
system procedures upon entering and exiting the system. The
session may be further customized by the execution of the user's
logon and logoff procedures. The creation of the user procedures
are explained in the following sections. The examples presented
are very useful and might be used as a starting point.

5.4.1 Logon Procedures
When the user enters VICAR, the system logon procedure, slogon,
is invoked. slogon is a facility-dependent logon procedure which
is normally invisible to the interactive user and is typically created
and maintained by the system manager. Once VICAR has been
invoked, the operating system executes this logon procedure and a
series of steps are executed in order to set up the VICAR
environment. One of the last steps in the startup procedure is to
examine the user's present directory for a ulogon.pdf and to
execute that procedure if it exists.

The ulogon is a procedure typically written and maintained by the
user in order to customize the initialization of the VICAR. The
ulogon is not a required procedure but most users find it very
useful. For example, the ulogon can be used to define the user's
VICAR commands, specify the location of the directories where
the user's application software resides or to configure the user's
VICAR session.

Example: ulogon.pdf (A detailed, line-by-line, description can be
found in Appendix 10.11).

 Procedure
 Refgbl $PROMPT
 Refgbl $BECHO
 Refgbl $ECHO
 Body
 ENABLE-LOG
 DEFCMD SCR "Enable-script"
 DEFCMD CHK "Syntax check"
 DEFCMD NOCHK "Syntax nocheck"
 DEFCMD QUE "ush lpq"
 LET $ECHO= "YES"
 LET $BECHO= ("YES","YES")
 LET $PROMPT="GoGetum"
 End-proc

The user may define a VMS logical name to point to a ulogon.
Doing this causes the same ulogon to be executed regardless of the
default directory. At the current time, this cannot be done on UNIX
systems, and a user must have a copy of their ulogon.pdf in each
directory from which they wish to run VICAR.

Example: Define a VMS logical name, in user's LOGIN.COM,
pointing to user's ULOGON.

 $DEFINE ULOGON MGN4:[USERID]ULOGON.PDF

Alternatively, the user could have a custom ulogon in each
directory by not defining the logical name and maintaining
separate ulogons.

5.4.2 Logoff Procedures
The slogoff is a facility-dependent logoff procedure which is
activated when the user exits from VICAR. One of the steps in the
procedure is to examine the user's current directory for a
ulogoff.pdf and to execute that procedure if it exists.

The ulogoff is typically written and maintained by the user in
order to customize the exiting from the VICAR session. The
ulogoff is not a required procedure but some users find it to be
very useful for directory maintenance. For example, the ulogoff
can be used to delete unnecessary files from the user's directories
or to automatically print out the latest version of the session.log.

Example: ulogoff.pdf (A detailed, line-by-line, description can be
found in Appendix 10.11)

 Procedure
 Body
 DISABLE-LOG
 ush /bin/rm last.par
 ush /bin/rm session.tsl
 ush lpr session.log
 End-proc

As with the ulogon the user should define a VMS logical name to
point to a ulogoff. Doing this causes the same ulogoff to be
executed regardless of the default directory. (Again, this is not
currently possible on UNIX systems.)

Example: Define a VMS logical name, in user's LOGIN.COM,
pointing to user's ulogoff.

 $DEFINE ULOGOFF SYS$LOGIN:ULOGOFF.PDF

Alternatively, the user could have a custom ulogoff in each
directory by not defining the logical name and maintaining
separate ulogoffs.

5.5 Aborting a VICAR Command
VICAR provides the user with the ability to interrupt a VICAR
operation once execution has started. VICAR has defined the key
sequence Control-C to activate "proc interrupt mode". Upon
entering Control-C, the operation is suspended and the user is
prompted by the "interrupt prompt" for appropriate commands.

Syntax:

 VICAR-INTERRUPT>command

The user may enter one of the following commands:

* ABORT - This forces termination of the operation and
returns the user to normal VICAR Command mode
* CONTINUE - This resumes the operation
* Other VICAR Intrinsic commands (Appendix 10.4).
Note: If a synchronous proc is invoked, the following error is
issued:

 [TAE-NOSYNC] Synchronous procs not available in
proc
interrupt mode.

While a proc is interrupted, it is valuable to be able to perform
Intrinsic commands and then resume the proc. The commands will
take effect immediately.

Example: Specify an Intrinsic command and resume a proc.

 VICAR-INTERRUPT>let $echo="yes"
 VICAR-INTERRUPT>continue

BEWARE Control-C is the only sequence defined for "Proc
interrupt mode". Other control characters will have very different
results. (See Section 7.1.1.5 for more information.)

6 VICAR User Aids

Contents

6.1 VICAR Help
 6.1.1 HELP Command
6.2 VICAR TUTOR Mode
 6.2.1 General TUTOR Information
 6.2.2 TUTOR-SCREEN Mode
 6.2.3 TUTOR-NOSCREEN Mode
6.3 VICAR MENU Mode
 6.3.1 General Menu Information
 6.3.2 The MENUTREE
 6.3.3 Creating a Menu
6.4 Syntax Checking
6.5 Message Interpretation
 6.5.1 General Message Information
 6.5.2 HELP-MESSAGE
 6.5.3 "?"

Within this section, a variety of user aids will be introduced. These
tools will prove invaluable in all stages of the user's development.
The aids being covered include Help, Tutor and Menu modes,
syntax checking and message interpretation.

6.1 VICAR Help
The VICAR executive assists users of all experience levels. It is
able to give on-line information and instructions to a user when
trouble is encountered at any point in a session. The following
types of "help" are available:

* Help information on a menu (Section 6.3)
* Help information on the operation of Tutor mode (Section
6.2)
* Help information on procs or intrinsic commands Section
6.1.1)
* Help information on the parameters of a proc Section 6.1.1)
* Help information on VICAR messages (Section 6.5)
If questions still remain after exhausting these options, further
assistance can be obtained by posting questions to the USENET
newsgroup jpl.vicar or sending them to
vicar@mipl7.jpl.nasa.gov via email.

6.1.1 Help Command
General help information on VICAR can be obtained by typing
help with no subcommand. General information is available on
most commands used in the Command mode.

Syntax: General Help information.

 VICAR> help

Help on a specific topic can be obtained by using one of the
following HELP subcommands:

help-command (default for help)
help-proc (default for help)
help-parm
help-global
help-message (Section 6.5.2)
help-hardcopy

help-command and help-proc are the defaults for help. VICAR
locates the command or proc by first doing a search among an
intrinsic command list and then, if not found, performing a
hierarchical library search.

The -command subcommand displays information on the specified
command. If a subcommand is specified, then the information
displayed will be for the subcommand only.

Syntax:

 VICAR>help-command command=command[-subcommand]

Example: Display help on the command enable-script.

 VICAR>help-command enable-script

The -proc subcommand displays information on the specified proc
or proc subcommand.

Syntax:

 VICAR>help-proc proc=proc[-subcommand]

Example: Display help on the proc label-list.

 VICAR>help-proc label-list

The -parm subcommand is used to request detailed information on
a specified parameter of a proc or a proc subcommand.

Syntax:

 VICAR>help-parm parm=parm proc=proc[-subcommand]

Example: Display help on the parameter nl of the program gen.

 VICAR>help-parm nl gen

The -global subcommand is used to request a detailed description
of the specified Global variable.

Syntax:

 VICAR>help-global variable=global_variable_name

Example: Display help on the global variable $aplib

 VICAR>help-global $aplib

The -hardcopy subcommand writes a disk file containing
information from both the help-proc and from Tutor. This file can
then be printed in order to obtain a hardcopy of the information. If
an output filename is not specified the file will be named
procname.mem and it will be located in the user's current directory.

Syntax:

 VICAR>help-hardcopy proc=proc [output=filename]

Example: Create a file (difpic.mem) of help information for the
program difpic.

 VICAR>help-hardcopy difpic

An alternate method to obtain a hardcopy of the help information
is to print the procname.pdf from the applications library.

6.2 VICAR Tutor Mode

6.2.1 General Tutor Information
Within VICAR there is a mode called "Tutor" which does exactly
what its name implies. It tutors or assists the user in the use of
procs and the parameters associated with them. Tutor not only
permits the user to obtain more information concerning procs, but
it actually permits the user to select parameters and then execute
the proc via the run command.

Tutor mode can be accessed by any one of the following methods:

* Typing tutor proc_name in Command mode
* Selecting a proc in Menu mode
* Executing the Tutor command in Dynamic Parameter mode
(Section 7.2.5)

* Hitting the key sequence esc esc at the proc prompt
(Section 7.1.1.5) in an interactive proc and then typing tutor
There are actually two modes of Tutor available.

TUTOR-SCREEN is a formatted terminal screen display (Section
6.2.2).

TUTOR-NOSCREEN is similar in style to the TAE Command
mode but provides a different prompt, lists the parameters
requested and allows a set of commands unique to a Tutor session
(Section 6.2.3).

When tutoring is initiated, the mode entered by Tutor will be
determined by the Global variable $tutor. It can be overridden by
using one of the Tutor subcommands (-screen, -noscreen).

Syntax:

 VICAR>tutor[-subcmd] proc_name[-subcmd] [proc-
parameters]

Example: Tutor the program label-list in SCREEN mode.

 VICAR>tutor-screen label-list

The proc-parameters field is optional and may contain a list of
parameters. Parameters supplied on the Tutor command line
become initial or default values in the Tutor session.

6.2.2 TUTOR-SCREEN Mode

TUTOR-SCREEN mode commands allow the user to:

* Request detailed information for parameters
* Update parameter values
* Scroll between pages of the Tutor display
* Scroll between components of a multi-valued parameter
* Request Tutor information on parameter qualifiers
* Save the parameter values
* Restore parameter values
* Execute the proc
Upon entering Tutor mode the user is presented with the first page
of a possibly multi-paged display showing information on each
parameter of the selected proc or command. For each parameter,
Tutor displays the following: the parameter name, a brief
description of the parameter, its current value (if one exists), and a
note on qualifiers defined for the parameter (if there are any).

EXPERT When a multi-valued parameter has more values than
will fit on one Tutor screen, only one full screen is shown. Tutor
maintains a "window" on the elements of the parameters. Unless a
particular element is referenced (e.g., parm(i)=), the display
window includes the first element. This window may be moved by
using the intrinsic command show.

The "+" adjacent to the page number in the upper right corner of
the Tutor display indicates that there are more pages available
within the display. If the character in that position is a period, there
are no more pages.

Descriptions of Tutor mode user commands and special Tutor line
editor keys can be found in Appendices 10.8 and 10.9,
respectively.

6.2.3 TUTOR-NOSCREEN Mode
The NOSCREEN mode of Tutor exists to support the following
situations: hardcopy terminals, unsupported terminals for which
VICAR can only operate in scrolling mode, low-speed terminals
where the time for screen update is prohibitive, or personal choice
(some users prefer the NOSCREEN Tutor mode).

NOSCREEN Tutor mode commands allow the user to:

* List parameters and their values
* Display parameters along with brief descriptions
* Update parameter values
* Request detailed information for parameters
* Request tutoring on parameter qualifiers
* Activate the proc
There are operational differences between NOSCREEN and
SCREEN modes. Features unique to NOSCREEN mode are:

* When TUTOR-NOSCREEN is initially entered, a list of
parameter names is automatically displayed.
* The user is prompted for commands with a VICAR-
proc_name> prompt.
* The paging commands (page and <cr>) are not available.
* When a parameter is given a value, there is no automatic
echo of the value.
* The list command may be used to display parameter names
and current values. This command may be supplied with a list of
specific parameters to be displayed, or if no list is supplied, all
parameters for the proc will be displayed.
* The display command may be used to display parameter
names, values and a descriptive text for each parameter.

Descriptions of Tutor mode user commands and special Tutor line
editor keys can be found in Appendices 10.8 and 10.9,
respectively.

Example: TUTOR-NOSCREEN Session

 VICAR>tutor-noscreen difpic
 proc "difpic", library "$R2LIB"
 Parameters requested: INP, OUT, SIZE, SL, SS, NL,
NS...
 VICAR-difpic>list

INP= (no value specified)
OUT= -- (null value)
SIZE=(1,1,0,0)
SL=1
SS=1
NL=0
NS=0
NB=0
FORMAT= -- (null value)
STAT="STAT"
MOD= -- (null value)

 VICAR-difpic>inp=(a.bat,b.cat)
 VICAR-difpic>out=d.dat
 VICAR-difpic>size=(1,1,400,350)
 VICAR-difpic>list size

SIZE=(1,1,400,350)
 VICAR-difpic>run

6.3 VICAR Menu Mode

6.3.1 General Menu Information
(At the current time, only a bare skeleton of the menu system is
available in UNIX VICAR. Most of the information below is for
the VMS system, but should apply to the UNIX system in the
future.)

Menu mode is the VICAR alternative to Command mode. In Menu
mode, a user invokes applications by locating and selecting them
through a series of menus. Each menu is a terminal display
containing categories, each describing either a more detailed menu
or a proc to be executed.

There are two methods to access the VICAR Menu mode.
Depending on system configuration, the user may enter the Menu
mode when invoking VICAR. In this instance, the user is given a
"ROOT" menu and the Menu prompt ?. Alternatively, the user can
manually enter the Menu mode.

Syntax:

 VICAR>menu [name=menu_name]

Where: menu_name is the name of the desired menu.

If this is the first entry into Menu mode for the current session, the
default menu is the ROOT directory defined by the host system. If
it is not the first entrance, then the default will be the most recent
menu the user accessed. The menu is located using the hierarchical
library search unless the user explicitly specifies the library name
of the menu.

Example: A typical menu screen.

 VICAR>menu name=root

The above figure is an example of the format of a menu terminal
display. The categories are numbered entries arranged vertically on
the screen. The prompt-line options are at the bottom of the screen
arranged horizontally above the menu prompt.

At the menu prompt, ?, the user selects a category or enters a
Menu option. If the category selected is a menu, the new menu is
displayed. If the category selected is a proc, VICAR enters Tutor
mode in order to prompt the user for the proc's parameters. After
execution of the proc, the display of the last menu can be obtained
by pressing the <CR> key.

If a Menu option is selected, VICAR executes the command. Menu
options are limited to those found in Appendix 10.7. These allow
only basic management functions which include: accessing,
moving back up the menu hierarchy, making a transition to
Command mode, and exiting VICAR.

EXPERT A user may switch back and forth between Menu mode
and Command mode. When entering the Command mode from a
menu (using command), the current menu and the path to the current
menu are remembered. This context is automatically restored when
Menu mode is subsequently re-entered.

6.3.2 The MENUTREE
(At the current time the Menutree is only available on VMS
systems.)

WIZARD The ability to move forward or backward through the
levels of a menu is essential to operating within VICAR.
Unfortunately the user also runs the risk of conceptually "losing
their place" in the system because of this flexibility. There is a
program, menutree, available within VICAR which permits the

user to generate a graphic representation of a selected menu
system.

Syntax:

 VICAR>menutree [menu=menu_name]
[output=output_option]

Where: menu specifies the starting menu name. If
omitted,

the default value is the top of the current
menutree (see Global variable $menus).

output directs the listing of the menutree:
= file - create menutree.txt
= printer - send to line printer
= terminal - send to terminal (default)

Example: Menutree run on the menu presented in Section 6.3.1.

 VICAR>MENUTREE MENU=TAE$MENU:ROOT OUT=T

 **************** VICAR HELP INFORMATION

 TAE$MENU:
 ROOT-------|

 |> TAE$MENU:INTRO.PDF
 |> NUT
 |- LEVEL3.
 | MDF-------|

 | |> TAE$MENU:SAMPLE1.PDF
 | |> DCL @TAE$MENU:GEOREF.COM
 | |> DCL
@TAE$MENU:TIEPOINT.COM
 | |> DCL
@TAE$MENU:PROJECTION.COM
 | |> DCL
@TAE$MENU:VARIATE.COM

 |
 |

 |- LEVEL4.
 | MDF-------|
 | |- ANNOT1.

 | | MDF-------|
 | | |- FONT

 | | |- MASKV
 | | |- STARLAB

 | | |- TEXTAD
 | |

 | |
 | |- DISPLAY1.

 | | MDF-------|
 | | |- BROWSE
 | | |- DISPLAYS
 | | |- DISPOUT
 | | |- EDIMAGE

.

.

.

WIZARD If Menutree cannot be located in TAE$UTIL, ask your
system administrator for the proper location.

6.3.3 Creating a Menu
WIZARD A menu corresponds to a Menu Definition File (MDF),
which is a text file created or changed by using the host system's
text editor. MDFs contain the title of the menu, text describing
each menu entry, name of the proc or menu files associated with
each entry and help information for the menu. Further information
on menu creation can be found in the TAE Command Language
Programmer's Manual.

6.4 Syntax Checking

A user has the ability, within VICAR, to check the syntax of a
procedure (Section 7.3) that has been written. This is particularly
useful for procedures that will be run in the Batch mode. The
syntax checker sets a switch which prevents VICAR commands
from executing. However, all normal processing up to the actual
procedure execution does take place, so any syntax or parameter
errors that are visible to VICAR will be detected and reported to
the user.

Once the syntax checker has been invoked, anything that is typed
will be verified (e.g., VICAR commands or procs).

Syntax:

 VICAR>syntax check

BEWARE The syntax checker only verifies the wording to make
sure all commands are valid VICAR commands. It does not check
logic errors, existence of referenced files or availability of
resources.

BEWARE All parameters required by a proc need to be supplied
in order to successfully run the checker. Syntax check will fail
when variables are assigned at time of execution (e.g., the proc
camparan).

The syntax checker will remain invoked until the user turns it off
wth the following command.

Syntax:

 VICAR>syntax nocheck

BEWARE The command let $switch=... should not be used in
SYNTAX mode, since the syntax check flag is in $switch. By
setting $switch to an absolute value, it is possible to accidently
turn off the syntax check mode. To change other options within
$switch, use the flag-add or flag-del commands. Further
online Help information is available on flags or see Appendix 10.4.

Syntax:

 VICAR>help flag

6.5 Message Interpretation

6.5.1 General Message Information
VICAR has the capability of providing online information and
instruction to a user when trouble is encountered. The user is
presented with brief messages when the error occurs and can
request additional clarification and guidance.

Brief error messages are one-line comments preceded, in brackets,
by a "message key".

Syntax:

 [SYSTEM-KEY] Message

where: [SYSTEM-KEY] is the "message key"
SYSTEM indicates which system issued the

message:

 VIC2 - VICAR Run-time Library
 TAE - the TAE supervisor

KEY is the specific identifier for the
 message given

MESSAGE is the text containing a comment
from
 VICAR

Example: End of volume message.

 [VIC2-ENDOFVOL] End of volume (double tape mark)
reached

In many cases, the brief error message adequately informs the user
of the problem. However, in some cases the user might still be at
loss as to what VICAR is trying to explain. In that case, there are
two methods for obtaining further online assistance on the message
interpretation:

* by using the VICAR command help-message
* by using the VICAR command ?
In addition to the online error facilities, the user can make use of
several other sources containing common message explanations,
including:

* Appendix 10.13 of this document
* the VICAR Run-time Library Reference Manual
* the disk file $TAEHELP/msg/taefac.msg on UNIX machines
or VICSYS:[VICAR121.TAE52_VAX-VMS.HELP.TM] TAEFAC.MSG on
VAXes.

6.5.2 HELP-MESSAGE

The command help-message is used when the user wishes VICAR
to expand upon the received message. VICAR responds with an
explanation of the error message and a suggested course of action
for the user.

Syntax:

 VICAR>help-message key=message-key

Example: Get more help on the end of volume message.

 VICAR>help-message key=vic2-endofvol

 Explanation:

 The end of volume mark (double tape mark or double
end
 of file) was hit when trying to open a file on an
input
 tape.

 User action:

 Scan tape to determine the actual number of files
on it,
 and make sure that the proc does not try to access
a file
 beyond that number.

6.5.3 "?"
An alternate method to obtain the same Help information is to type
the VICAR command "?". "?" is special in that no other
parameters are allowed and it always causes VICAR to display
help information on the last message received.

Syntax:

 VICAR>?

7 The VICAR Image
Processing Executive
Contents

7.1 Introduction to the TAE Command Language (TCL)
 7.1.1 TCL Command Line Rules

7.1.1.1 Abbreviations
7.1.1.2 Line Continuation
7.1.1.3 Labels
7.1.1.4 Special Characters
7.1.1.5 Special VT100 Terminal Keys
7.1.1.6 Command Line Editor

 7.1.2 Variables
7.1.2.1 Local Variables
7.1.2.2 Global Variables
7.1.2.3 Assignment
7.1.2.4 Intrinsic Variables
7.1.2.5 Substitution and Dereferencing

 7.1.3 Expressions
 7.1.4 Built-In Functions
 7.1.5 Error Handling
7.2 VICAR Command Line Structure
 7.2.1 Command Line Syntax

7.2.1.1 Commands and Proc Names
7.2.1.2 Subcommands
7.2.1.3 Command Qualifiers
7.2.1.4 Parameter List
7.2.1.5 Comments

 7.2.2 Parameters
 7.2.3 Parameter Value Specification

7.2.3.1 Parameter_name=value Format
7.2.3.2 Keyword Format
7.2.3.3 Positional Format
7.2.3.4 Parameter Qualifiers

 7.2.4 Missing or Invalid Parameter Values
 7.2.5 Dynamic Parameters
7.3 Proc Definition Files (PDFs)
 7.3.1 Procedure Definition Files (PDFs)
 7.3.2 Process Definition Files (PDFs)

 7.3.3 Executing a PDF
 7.3.4 HELP Files
 7.3.5 Global PDFs
 7.3.6 Compiled PDFs
7.4 Script Files
7.5 Tape Handling
7.6 Session Logging
7.7 Sample Interactive Session

Within this section, the major aspects of the VICAR executive are
covered. Complete detail has not been attempted, but all
information likely to be commonly required by users has been
included. The major concepts being described include command
rules and syntax, parameter entry, procedure and script file
construction, session logging, and tape handling.

The new user may be confused the first time through this section,
since a lot of important information is presented at the same time.
Some of the earlier examples might be particularly confusing
because they use concepts that are introduced a little later. The new
VICAR user should try to understand the basic concepts the first
time through and not worry about understanding everything. By
the end of this section, the concepts should all start to make sense.

7.1 Introduction to the TAE Command
Language (TCL)
Communication between the user and VICAR is accomplished
through the TAE Command Language (TCL). TCL allows the user
to access procs, supply parameters to them, and initiate their
operation using a single command line. TCL provides the
following tools to achieve this:

* local and global variable assignment

* expression evaluation
* use of built-in functions
* macro-level substitution for variables and parameters
* conditional execution and looping

7.1.1 TCL Command Line Rules
While VICAR GUIs are currently being developed, at the present
time all user communication to VICAR is accomplished through
the use of the TCL Command Line. VICAR functions and procs
are invoked by using established rules and syntax. The standard
rules governing command lines are covered in this section, while
syntax is detailed in Section 7.2.1.

7.1.1.1 Abbreviations
The user is allowed to use abbreviations for the following cases:

* Intrinsic commands (Appendix 10.4)
* Tutor, Menu and Help commands and subcommands
* Names of parameters used in command lines
Proc names, library names and file names may not be abbreviated.

The extent of allowed truncation is governed by one rule: the
abbreviation must uniquely specify one command or parameter
name out of all those allowed at the time.

Example: Abbreviation of parameters.

 VICAR>F2 A B FUN="IN1*10." 'HA

will work as well as the full command line:

 VICAR>F2 A B FUNCTION="IN1*10." 'HALF

7.1.1.2 Line Continuation
A command line may be continued to a maximum of 2048
characters on subsequent lines by ending it with a "+" character.
Lines may not be continued within command names, comment
fields or parameter values or names.

Example: Continuation of a command line.

 VICAR>FARENC URANUS.RED (A,B,G) +
 VICAR>+ 'AUTO GEOM=3 AREA=(50,50,700,700)

BEWARE DCL and USH commands submitted at the VICAR
prompt follow the above rules (i.e., using the "+" character). All
those submitted from the VICAR DCL mode or USH mode use the
standard VMS DCL rule of continuing lines with a "-" character,
or the UNIX rule of using a "\" character.

7.1.1.3 Labels
EXPERT Any command line within VICAR procedures may be
labelled. A label is created by prefixing a line with a string of
characters (which make up the label) and the ">" character. This
label may then be referenced by the GOTO command elsewhere in
the procedure.

Example: Label use in procedures (the label is "BATCH").

Procedure
Refgbl $RUNTYPE
Body
IF ($RUNTYPE="BATCH") GOTO BATCH
WRITE "ARE WE HAVING FUN YET?"

BATCH>TESTPROC (A,B,C)
End-proc

BEWARE Contrary to normal Fortran programming standards,
only forward branching is permissible.

7.1.1.4 Special Characters
The special characters allowed by TCL and their meanings are
listed in Table 3-2 of the TAE Command Language Programmer's
Manual. The most useful of those symbols are listed here. Only the
"&" character retains its meaning when placed within a quoted
string (a character string bracketed by " " characters).

 CHARACTER MEANING

! comment field indicator
& variable substitution flag
@ variable dereferencing flag
" " start and end of quoted string
| start or end of qualifier field
, separator used in lists
SPACE general separator
? query for help on last message
' flag for keyword value
+ line continuation indicator

7.1.1.5 Special VT100 Terminal Keys
The use of certain special keys has effects that are unique to TCL.
The most important of these keys are ESCAPE, Control-C,
Control-Y and Control-O. Information on the keys used by the
Command Line Editor and Tutor mode are found in Section 7.1.1.6
and Appendix 10.9. The following information describes the
VICAR Command mode.

Typing the ESCAPE key twice (ESC ESC) serves two functions
within VICAR. When entered on any continuation line, it will
cancel the entire command. When entered at a prompt from some
interactive procedures, the procedure will be interrupted. Options
available at this point are ABORT, TUTOR, and EXIT. ABORT will
terminate the procedure, TUTOR will put VICAR in Tutor mode,
and EXIT will return the user to the procedure prompt.

A Control-C entry will abort a VICAR operation (Section 5.5) and
prompt the user for a further command. After appropriate response
to the VICAR-INTERRUPT> prompt, the user is left in VICAR.

On VMS systems, Control-Y will abort an operation and, in
addition, will end the VICAR session, lose VICAR dummy names
and some allocated devices, and return the user to the DCL
prompt. On UNIX systems, it will suspend the VICAR session and
return the user to the shell prompt. Typing fg will re-initiate the
VICAR session.

A Control-O entry will discontinue all further output to the
terminal screen from the current proc. The proc continues to run to
completion and continues to output to the session log file. A
second Control-O entry will again route output to the terminal
screen.

7.1.1.6 Command Line Editor
A command line editor is implemented in VICAR for VT100-
compatible video terminals. This editor allows the user to recall
previous commands and modify the current (or recalled)
command. Commands which may be recalled include those issued
from within an interactive program (IDX being an exception). The
special keys utilized by the editor are described in Appendix 10.10.

On VMS systems, the method of line modification (either insertion
or overstrike) is controlled by that selected under DCL (the SET
TERM command). A Control-A will toggle between the options.
(The insertion mode is the only one available on UNIX systems.)

The user may scroll backward and forward among the recallable
commands with the UP ARROW and DOWN ARROW keys. UP gives
earlier commands; DOWN gives later.

BEWARE Restrictions:

* Only the twenty most recently entered commands are
recallable.
* This feature is not available for commands entered in
VICAR's DCL or USH modes.
* Only the first line of multi-line commands may be recalled.

7.1.2 Variables
TCL allows the definition of named values called variables. These
may be assigned values, be the object of substitution or be used in
expressions. Variables may be of two distinct scopes: Local or
Global. All variables must be defined before use. The intrinsic
command DISPLAY may be used to examine the value of variables.
(See Section 10.4 for an explanation of the DISPLAY command.)

7.1.2.1 Local Variables
A Local variable may be referenced only within the procedure or
session in which it was declared. These variables must be defined
with the LOCAL command before use in an interactive session or in
a procedure. The definition of a Local variable in a procedure may
be made before or after the BODY statement. The following
characteristics are defined for the LOCAL command:

NAME The variable name, maximum of 8 characters.

TYPE The variable type, limited to the values: INTEGER,
REAL, STRING and FILE.

COUNT The number of elements in the variable or the
range

of valid COUNTs. A count exceeding 1 creates a
multi-valued variable; a count of 0 implies the
variable is nullable (i.e., not required or may
receive the null value (--)). Default is 1.
Max count is 600.

Examples: Possible COUNT declarations.

 COUNT=1 must have one value associated with the
variable

 COUNT=1:10 may have 1 to 10 values entered,
which will be

called variable_name(1)...variable_name(10)

 COUNT=0:1 may have at most 1 value, but need not be

entered (i.e., COUNT=0 is valid)

INITIAL The initial value for the variable, consistent
with

TYPE, VALID and COUNT.

VALID The allowed values or range of values of the
variable,

consistent with TYPE.

Examples: Possible VALID declarations.

 VALID=4:10 values 4,5,6,7,8,9 or 10 are
allowed

 VALID=(1:4,8:10) values 1,2,3,4,8,9 or 10 are
allowed
 VALID=(J,S,U,N) the listed values are allowed

Example: Declaration of Local Variables

 Local J TYPE=INTEGER COUNT=0:1 VALID=(5,6,7)
 Local (L,K) REAL COUNT=1 INITIAL=1.5

Example: Procedure COUNTEM using a Local variable.

Procedure
Body
LOCAL I INTEGER INIT=1
WRITE "Watch me count to 10"
LOOP

WRITE "&I"
LET I=I+1
IF (I>10) BREAK

END-LOOP
WRITE "How was that?"
end-proc

Example: Running COUNTEM procedure.

 VICAR>COUNTEM
 Watch me count to 10
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 How was that?

Local variables are deleted when the operation that created them
ends or they are explicitly deleted with the intrinsic commands
DELETE or DELETE-LOCALS. The DELETE command will delete a
single variable, whereas DELETE-LOCALS will delete all the
currently defined local variables.

Syntax:

 VICAR>DELETE NAME=variable_name
 VICAR>DELETE-LOCALS

7.1.2.2 Global Variables
A Global variable may be accessed from any level of a session for
which it was defined. If accessed in a procedure, a REFGBL
statement is required unless it is implicitly defined by VICAR or
used at the interactive level. Global variables are defined by PARM
commands within special Global procedures (Section 7.3.5) or by
the DEFGBL command in regular procedures (Section 7.3.1). A PARM
command is similar in structure to the LOCAL command and a
DEFGBL command has exactly the same structure. The
characteristics defined by PARM commands are outlined in Section
7.2.2.

Example: A Global procedure

Global !proc name is CDEF.PDF
Parm CAT STRING COUNT=1 DEFAULT=GARFIELD +

 VALID=(Garfield, Heathcliff, Sassafras)
End-proc

Execution of the above procedure.

 VICAR>cdef cat=sass
 VICAR>display cat

cat="Sassafras"

Example: Use of the DEFGBL command.

procedure ! procedure game
body
defgbl play type=string count=1:2 +

valid=("base","volley","ball")
refgbl play
let play=("base","ball")
write "We like to play &play"
end-proc

Execution of the procedure game:

 VICAR>game
 We like to play (base,ball)

Like Local variables, Global variables are deleted when the
operation that created them ends or they are explicitly deleted with
the intrinsic commands DELETE or DELETE-GLOBALS. The DELETE
command will delete single Global variables, while the DELETE-
GLOBALS will delete all those defined in a Global PDF.

Syntax:

 VICAR>DELETE NAME=variable_name
 VICAR>DELETE-GLOBALS PROC=proc_name

Note: Globals may not be of type KEYWORD (Section 7.2.3.2).

7.1.2.3 Assignment
All variables may be assigned values by the use of the LET
command. TCL will not allow values which are inconsistent with
the defined characteristics. In addition, the null value "--" or the
empty string value " " may be assigned, if COUNT includes "0".

Example: Change the value of the Global variable $ECHO.

Procedure
Refgbl $ECHO
Body
Let $ECHO="YES"
COPY myfile.dat newfile.dat
End-proc

In all cases, if the variable definition allows multiple values, each
value may be individually accessed or assigned by appending the
element number in parentheses to the variable name. In addition,
the element number may be an expression (Section 7.1.3).

Example: Possible assignments for a multi-valued parameter.

 LET OUTOF(3) = "BOUNDS"
 LET OUTOF(P+4) = "LUCK"

7.1.2.4 Intrinsic Variables
VICAR maintains implicitly defined local and global variables. In
certain cases, the user may even be able to change the value of one
of these intrinsic variables.

EXPERT There are four Intrinsic Local variables available to the
user. All Intrinsic Locals may be accessed without defining within
a procedure; only _STDOUT is not available in batch.

_ONFAIL Multi-valued variable; at most two values. Controls error
handling (Section 7.1.5).
_PROC Contains the name of the currently running proc.
_SUBCMD Contains the name of the currently active subcommand.
_STDOUT Multi-valued variable; at most two values.
_STDOUT(1) contains the file or device name to which the standard
output is directed. This is normally set to "SYS$OUTPUT", but may
be directed to a file or the print queue (e.g., "SYS$PRINT").
_STDOUT(2) may contain either "APPEND" or "CREATE", defining
whether to add to an existing file or create a new one. The default
is _STDOUT=("SYS$OUTPUT"," ").
EXPERT Intrinsic globals may be accessed without defining on
the interactive level, but within a procedure a REFGBL command
may be required. Descriptions of Intrinsic Global variables are
contained in Appendix 10.6.

Example: Access Intrinsic variables $RUNTYPE and _PROC.

Procedure
Refgbl $RUNTYPE
Body
IF ($RUNTYPE="INTERACTIVE") GOTO INT
LOCAL PN STRING
LET PN = _PROC
WRITE "Proc &PN is invoking TESTPROC"
INT>TESTPROC (A,B,C)
End-proc

7.1.2.5 Substitution and Dereferencing
EXPERT TCL gives the user the flexibility of creating procedures
which can both substitute and dereference variables. Individual
values of a multi-valued variable may not be used for substituting
or dereferencing.

Substitution

EXPERT Prefixing a variable name with the "&" character tells
VICAR to replace the "&variable_name" string with the character
string that represents the value of the variable. This replacement
occurs before command interpretation.

Example: Substitution.

 LET J = 14
 LET I = "PAWS.DAT"
 COPY &I F&J SIZE=(100,100,50,50)

is interpreted as

 COPY PAWS.DAT F14 SIZE=(100,100,50,50)

BEWARE When substituting variables imbedded in a string or
word, the variable name itself may require quotes to distinguish it
from the rest of the string. This however, becomes a problem when
substitution is to be performed inside an otherwise already quoted
string, such as a WRITE statement. In this case, concatenation into
another variable may be necessary.

Dereferencing

EXPERT Prefixing the variable name with the "@" character tells
VICAR to replace the "@variable_name" string with the value of
the variable. This is like a pointer operation and occurs at run time,
not before command interpretation. This is allowed only in value
fields (right of the equal sign). The replacing value must be
consistent with the definition of the variable.

Example: Dereferencing in a procedure.

Procedure! proc name is GPRC.PDF
Parm F INTEGER COUNT=0:1 DEFAULT=--
Body
LIST OUT SPACE=@F
End-proc

Execution of the procedure GPRC:

 VICAR>GPRC F=10 ! acts like: LIST OUT SPACE=10
 VICAR>GPRC ! acts like: LIST OUT

EXPERT The "@" is telling VICAR: "when the value of SPACE is
needed, use the value of F". A "--" for F implies the same for
SPACE, which acts like SPACE was not entered.

EXPERT Differences between Substitution and Dereferencing are
detailed in the TAE Command Language Programmer's Manual.
Generally speaking, though, "@" always works properly for value
fields and "&" may not under certain circumstances.

Example: Dereferencing in a procedure.

 VICAR>GEN OUT=DATASET&"NAME".IMG

7.1.3 Expressions
 EXPERT TCL allows various kinds of expressions in order to
calculate a value from variables, functions and operators.
Expressions are only allowed in the commands LET, FOR, IF and
ELSE-IF, and are not allowed in proc invocation commands.
Expressions using variables of more than one type are not allowed.

EXPERT The various operators available to the user are listed
below with the supported expression types.

Numeric Expression

+ addition
- subtraction
* multiplication
/ division

Example: Assignment statement.

 LET X = Y*2

String Expression

// string concatenation

Example: String concatenation.

 LET TRUE = "GARFIELD "//"&verb"//" LASAGNE"

Relational Expression

> greater than
< less than
= equal to
>= greater than or equal to
<= less than or equal to
<> not equal to

Example: A relational expression.

 IF (WAIST >= 100) GOTO FAST

Logical Expression

AND logical AND
OR logical OR
NOT logical negation

Example: A conditional statement.

 IF (day="Monday" and floor="cold") GOTO SLEEPIN

7.1.4 Built-In Functions
EXPERT TCL supplies user-callable functions that can be used in
commands and expressions, anywhere a variable name could be
used. At run time, the value of the function replaces the function
call on the command line.

EXPERT Available functions include:

 Function Returned Value

 $ASFI(jobname) Returns the current value of $SFI
for the

 asynchronous job.
 $ASKEY(jobname) Returns the current value of $SKEY
for the

 asynchronous job.
 $COUNT(name) The number of elements for the
variable

 named; -1 if variable has no value, 0 if
 variable has null value (--).

 $FIX(real) Truncated real value converted
to integer.
 $FLOAT(integer) Integer value converted to real.

 $GLOBAL(name) 1 if variable is a Global, 0 if
not.
 $PANEL(panelname) Returns the status of existence
for the

 named panel.
 $STRLEN(string) Returns length of specified string.

Example: Use of the $COUNT function.

 LOCAL I INTEGER COUNT=0:4
 LET I = (1,2,4)
 LOCAL J INTEGER
 LET J = $COUNT(I) !variable J is given the value 3

7.1.5 Error Handling
EXPERT The Intrinsic Global variable $SFI is the indicator of
success or failure of a command. It is set to negative upon failures,
or remains positive for successes. This variable may be referenced
by procs for error handling. Alternatively, the Intrinsic Local
variable _ONFAIL can do the error handling for the user. _ONFAIL
will check the $SFI indicator and take the action specified by the
user. _ONFAIL does not work for errors in intrinsic subcommands.

EXPERT _ONFAIL(1) is set by the user to the command which
shall be executed in the event of command failure. _ONFAIL(2) is
set by the user to the command which shall be executed upon
ABORT after CONTROL-C by the user.

EXPERT The legal values of _ONFAIL are defined below.

 "RETURN" The proc gets terminated and error
indicators

 are passed back up through the chain of
 invoking procs.

 "BREAK" Control passes to the first command
outside

 the loop containing the failed command.

 "CONTINUE" Error has no effect, proc
execution continues.

 "GOTO label" Control passes to command indicated
by

 "label".

 "NEXT" Control passes to first command of
current

 loop.

 "STOP" The proc and its invoking procs
terminate.

EXPERT The default value is _ONFAIL=("RETURN","RETURN").

Example: Equivalent _ONFAIL statements.

 LET _ONFAIL="CONTINUE"
 LET _ONFAIL(1)="CONTINUE"

Example: _ONFAIL use in a loop.

 LET _ONFAIL="GOTO ERROR"
 LOOP

COPY IN/&F X
MASKV X Y.&F
NEXT
ERROR>WRITE "WARNING: FILE &F FAILED"

 END-LOOP

If any of the steps in the loop fails, a warning message is written
and the loop continues to the next iteration.

7.2 VICAR Command Line Structure
The VICAR command is a string containing information that
controls VICAR's execution. Executing a command line requires
proper syntax. This section will describe the command line
structure in detail.

7.2.1 Command Line Syntax
A full command line consists of five terms:

* an intrinsic command or a proc name
* a subcommand
* command qualifiers
* a parameter list
* a comment field
Syntax:

 VICAR>name[-subcommand] [|qualifiers|] +
 VICAR>+ [parameter_list] [!comments]

7.2.1.1 Commands and Proc Names
The first component of the command line may be a proc name or
one of the VICAR intrinsic commands. See Appendicies 10.3 and
10.4, respectively, for lists of standard VICAR procs and intrinsic
commands.

A proc name invokes a stored Proc Definition File (PDF - Section
7.3) from a hierarchical search of the VICAR libraries (Section
5.1).

Intrinsic commands cause the system to perform standard,
predefined operations. These allow the user to interact with the
VICAR executive rather than with application procs. For instance,
the intrinsic command ENABLE-SCRIPT instructs VICAR to execute
commands stored in a file.

Example: Execute intrinsic command usage after running the proc
gen. (Note: The usage command has not yet been ported to UNIX
but will be included in future releases. Also, the following example
shows what the output will look like for SunOS UNIX; the format
will be slightly different for Sun/Solaris and VMS operating
systems.)

 VICAR>gen rate.img 10 10
 Beginning VICAR task gen
 GEN Version 6
 GEN task completed
 VICAR>usage

 Statistic Session Last Proc (gen)
 --------- ------- ---------
 Proc Start Time Mon Sep 12
15:54:02 1994
 Block input operations 5 0
 Block output operations 0 0
 Page Faults(no ph I/O) 24 1
 Page Faults(phys I/O) 30 0
 System CPU Time 00:00:00.20 00:00:00.00
 User CPU Time 00:00:00.41 00:00:00.01
 Connect Time 00:00:16.81 00:00:00.32

Intrinsic commands are run by VICAR in the parent process, not
the subprocess. It is possible, therefore, to get the two processes
confused, as in the following examples.

Example: Confuse the parent process and yourself.

VMS:

 VICAR>DCL ASSIGN UD:[USERID] X !Assign done in
subprocess.
 VICAR>DCL DIR X:*.SCR !Dir done in
subprocess.

 Directory UD:[USERID]
RING.SCR;2 1/3 13-JAN-1987 10:00
Total of 1 file, 1/3 blocks.

 VICAR>ENA-SCR X:RING.SCR !Ena-scr done in parent
process

!which didn't know about assign.
 [TAE-OPNRD] Unable to open script file. VMS/RMS
code
 99524 stv=2312.

UNIX: In UNIX, the problem is even worse, since each ush
command is run in a separate subprocess. (Assume the user is
currently in the /home/abc directory.)

 VICAR>ush ls /scr/abc
 ring.scr
 VICAR>ush setenv OUTDIR /scr/abc !Setenv done in a

 !subprocess.
 VICAR>ush ls $OUTDIR !Lists current
directory,
 a.img a.out b.img c.img !since OUTDIR
unknown in

 !this subprocess.
 VICAR>ena-scr $OUTDIR/ring.scr !OUTDIR unknown
in the

 !parent process.
 [TAE-OPNRD] Unable to open script file. No such
file
 or directory.

Example: Keeping things clear (VMS example).

 VICAR>DCL ASSIGN/JOB UD:[USERID] X !Assign done
for all

!processes.
 VICAR>DCL DIR X:*.SCR !Dir done in
subprocess.

 Directory UD:[USERID]
RING.SCR;2 1/3 13-JAN-1987 10:00
Total of 1 file, 1/3 blocks.

 VICAR>ENA-SCR X:RING.SCR !Ena-scr done in parent
process

!which now knows about assign.

Under UNIX there is no equivalent of assign/job. Since each
program is run in a separate sub-process, the environment variable
set with ush will not effect the next command. The only way to set
an environment variable for a VICAR session, is to do it before
entering VICAR.

7.2.1.2 Subcommands
Some commands and procs may perform several different but
related functions, each of which requires a different set of
parameters. These functions are called "subcommands". A
subcommand is specified as a suffix to the proc or command name,
separated with a hyphen and no spaces.

Example: Use of a subcommand.

 VICAR>LABEL-DELETE INP=A.DAT KEYS=STRETCH

A command may have a default subcommand. Subcommands of
intrinsic commands are listed along with the commands in
Appendix 10.4. Subcommands of procs can be found by tutoring
the proc.

7.2.1.3 Command Qualifiers
A VICAR command may have qualifiers which are VICAR-
defined parameters (not program specific) that specify the
environment for command execution. Command qualifiers are
optional and may appear in any VICAR proc invocation command.
If qualifiers are present, they must be listed between vertical bars,
"|", immediately after the proc name, and must be supplied in
standard parameter list format (Section 7.2.1.4). As in any
parameter list, qualifier values may be specified by position
(Section 7.2.3.3) or associated with a qualifier name (Section
7.2.3.4). Qualifier names may be abbreviated using the same rules
as for parameters (Section 7.2.2).

Example: Run the program F2 in Batch. Note: Batch mode is
currently only available on VMS VICAR.

 VICAR>F2 |RUNTYPE=BATCH| A.DAT B.DAT +
 VICAR>+ (1,1,100,100) FUNCTION="2*IN1" 'HALF

Appendix 10.5 lists and briefly describes the command qualifiers.
For detailed descriptions, see the TAE Command Language User's
Manual.

7.2.1.4 Parameter List

A parameter list is a list of zero or more (maximum of 600) values,
called parameters, (Section 7.2.2), to be provided to a proc or
command.

Syntax: Parameter list.

 parm-1=value-1,parm-2=value-2,...,parm-n=value-n

where: parm-1 is the first parameter name
value-1 is a value to be assigned to the

first parameter
etc.

The parameters within a parameter list may be separated by a
comma and/or any number of spaces.

7.2.1.5 Comments
Comments are introduced by the character "!" and may appear
anywhere on a line. Anything that appears after "!" is a comment.
Comments are ignored by VICAR. Use the comment character to
insert a blank line in a series of proc statements or to document a
proc.

Examples: The use of comments.

 VICAR>!
 VICAR>! Test filtering procedure
 VICAR>GEN T.DAT 100 100 + !Generate test image
 VICAR>+ linc=1 sinc=2

BEWARE If the line continuation character, "+", is used, it must
precede the comment character, "!".

7.2.2 Parameters
Proc parameters are a form of data used to control the specific way
a proc operates. Each parameter's attributes are defined in its Proc
Definition File (PDF - Section 7.3) by PARM commands. Parameter
attributes specify how the parameter value is handled when the
proc is invoked. The characteristics specified by the definition are:

* name
* position on the command line
* type
* count (minimum and/or maximum number of values)
* default value
* valid values or range of the values
* if the parameter is a dataset parameter, whether the dataset is
an input, output or input/output dataset
* name of the proc where the parameter qualifiers are defined
A parameter that has no default value is a mandatory parameter.

The number and type of parameters used on the command line are
proc-dependent. They may be separated by blanks or commas.
Parameter names and values may be abbreviated provided the
parameter can be unambiguously identified among all the
parameters for the proc.

Parameters may be one of five types:

INTEGER or REAL - A numeric integer or decimal value
consisting of the characters "+", "-", ".", "0" through "9", and/or
"e" (the power indicator). Spaces are not permitted within a
numeric value. The null value "--" is allowed. This type is only for
values being passed into procs.

STRING - A character string of maximum length 250. If any
characters listed below appear in the string, the string must be
surrounded by double quotes, " ". The empty string " " and the null
value "--" are allowed. This type is only for values being passed
into procs.

KEYWORD - A character string of maximum length 8. None of
the characters listed below are allowed For more information on
keywords, see Section 7.2.3.2. This type is only for values being
passed into procs.

NAME - A character string which is the name of a declared TCL
variable. Values output by procs must be of this type.

The characters recognized by TCL which are the subject of the
above STRING and KEYWORD restrictions include:

space ! ,) (+
' > < | @ =
tab

7.2.3 Parameter Value Specification
A parameter may be assigned a value in several ways. The values
may be defaulted, restored from previously saved values or
explicitly specified.

Parameters with defined default values will automatically take
those values if they are not given values any other way.

A set of parameters may be saved and later restored, in the same or
a later session, using the SAVE and RESTORE command qualifiers or
the SAVE and RESTORE Tutor commands.

Example: Run the program TFILT with its saved parameters.

 VICAR>TFILT |RESTORE=TFILT.PAR|

Parameter values may be assigned explicitly in any of three
formats:

* parameter_name=value
* 'value (if parameter is of type KEYWORD)
* position
Parameters defined to have multiple values may be explicitly
specified by parenthesized lists using commas or blanks as
separators.

Example: Specification of multi-valued parameters.

 VICAR>F2 inp=(a,b,c) out=d.dat size=(1,1,100,100) +
 VICAR>+ func="2*IN1"

BEWARE The values within multi-valued parameters are
position-dependent. VICAR procs expect the sequence to be that
defined in the PDF for the proc.

7.2.3.1 Parameter_name=value Format
Parameters may be in any order when specified this way. If no
value is given, then the default value is assigned to the parameter.

Example: A command line in parameter_name=value format.

 VICAR>F2 inp=a.dat out=b.dat size=(1,1,100,100) +
 VICAR>+ format=half function="2*IN1"

7.2.3.2 Keyword Format
Keyword format is a special case of parameter_name=value
format for KEYWORD type parameters only. All of the above rules
still apply, but a single quote, ', replaces the parameter_name= part
of the specification. The ' is necessary to distinguish this format
from positional format.

Example: Specification of keywords.

 VICAR>F2 inp=a.dat out=b.dat size=(1,1,100,100) +
 VICAR>+ 'half function="2*IN1"

7.2.3.3 Positional Format
The user should be aware that the order in which the proc receives
the parameters is not necessarily that in which they were specified.
The Proc Definition File (PDF) for a specified proc (Section 7.3)
defines the order of the parameters by the sequence of the PARM
statements in the PDF. VICAR allows the parameter_name= part
of the parameter specification to be omitted if the parameters are
specified on the command line in exactly the same order as they
occur in the PDF. This order is the same as the order in which the
parameters appear in the Tutor display.

Because VICAR procs generally have many parameters, whose
order would be difficult to remember, a convention has been
adopted requiring that all procs have the same three initial

parameters (except for programs such as GEN, AL and LIST).
Their order in the program PDF is:

INP a defined number of strings specifying input
file or input device names in the PDF

OUT a defined number of strings specifying output
files or output device names in the PDF

SIZE four integers specifying:

starting line
starting sample
number of lines
number of samples

Example: Standard convention for INP, OUT, SIZE.

 VICAR>F2 a.dat b.dat (1,1,100,100) format=half +
 VICAR>+function="2*IN1"

BEWARE Once any parameter value is specified using an explicit
parameter name, all remaining parameters on the command line
must be specified using explicit parameter names. In a positional
parameter list, two successive commas indicate that the
corresponding parameter's default value is to be used. There
cannot be two successive commas after a value has been provided
using an explicit parameter name.

Example: Correct use of explicit parameter names.

 VICAR>F2 inp=a.dat out=b.dat size=(1,1,100,100) +
 VICAR>+format=half function="2*IN1"

not

 VICAR>F2 inp=a.dat b.dat (1,1,100,100) format=half
+
 VICAR>+function="2*IN1"

7.2.3.4 Parameter Qualifiers
Parameter qualifiers are like sub-parameters (parameters to the
parameters). Upon proc invocation, the values of qualifiers to a
parameter are specified after the parameter value and set between
vertical bars, "|".

Syntax:

parameter=value|qual1=val1,qual2=val2,...qualn=valn|

Example: Specification of parameter qualifiers.

 VICAR>IMGCOPY
from=file1|bands=(n1,n2),format="BSQ"| +
 VICAR>+ to=file2

The rules for specifying parameter qualifiers are identical to the
rules for parameters. Therefore, parameter qualifier values may be
entered by position.

Example: Specification of positional parameter qualifiers.

 VICAR>IMGCOPY file1|(n1,n2), "BSQ"| file2

7.2.4 Missing or Invalid Parameter Values
Parameter errors occur when a proc is invoked in the following
cases.

* Required parameters (those with no defined default) were not
supplied
* The specified values were not consistent with the parameter
definition
* An undefined (or misspelled) parameter name was entered
VICAR issues an error message in these cases and reprompts the
user.

Example: Sample parameter error message.

 VICAR>LIST CLIFF.ROT (100,100,10,10) 'SPAXE
 [TAE-KEYWORD] Undefined keyword "SPAXE".
 Re-enter the command line or type TUTOR to recover
 specified values.

The user may respond with "Tutor" and enter Tutor mode to
respecify the missing parameters or obtain help on the parameter in
question (Section 6.5).

7.2.5 Dynamic Parameters
An executing proc may prompt the user for parameter entry. These
parameters are called Dynamic parameters. Programs generate
such requests with special subroutines described in the VICAR

Run-time Library Reference Manual and the TAE Command
Language Programmer's Manual. Procedures, both Asynchronous
and Synchronous may also request parameters through the use of
the GETPAR command.

Example: Dynamic parameter use in the procedure CON.

 Procedure ! procedure CON
 Local CONST INTEGER
 Body
 GETPAR CONST
 GEN A.DAT 10 10 IVAL=&CONST LINC=0 SINC=0
 WRITE "Created A.DAT with all DNs = &CONST"
 End-proc

Example: Execution of the procedure CON.

 VICAR>CON
 ENTER CONST
 ->12
 Beginning VICAR task GEN
 GEN Version 6
 GEN task completed
 Created A.DAT with all DNs = 12

7.3 Proc Definition Files (PDFs)
As discussed in Section 4.5, a proc may be either a procedure or a
process. PDFs are text files defining parameters for the proc and
have a .pdf file extension. For procedures, the PDF also contains
VICAR commands to be executed. For processes, the PDF has an
executable program file associated with it to be activated. In this
section, the user will become familiar with procedure definition

files, process definition files, Global PDFs, the execution of PDFs,
help files for PDFs, and compiled PDFs.

BEWARE On UNIX systems, proc names must be in lower case
letters. Procs may be called using either lower case or upper case
characters, but the file itself must have a lower case name, or it
will not be found by the VICAR executive.

7.3.1 Procedure Definition Files (PDFs)
A VICAR Procedure Definition File is the method that most users
will select to join parameter definitions and a series of VICAR
commands together and selectively control their execution. A
procedure may be simple or complex and yet all users, even the
most novice user, will be able to write one.

The procedure PDF is comprised of two main parts: the declaration
section and the body. The declaration section contains the
parameter declarations, the Local variable declarations and the
Global variable references. The body contains the VICAR
commands to be executed.

Syntax: Basic format of a procedure PDF.

 Procedure [HELP=help_information_location]
 Defcmd !
 Refgbl !This is the declaration section. All
entries
 Parm !within this section are optional and they
can
 . !appear in any order so long as they
appear
 . !between the PROCEDURE and BODY commands.
 Body

 . !This is the body of the PDF. VICAR
commands
 . !should be entered in the order they will
be
 . !executed.
 End-proc

Note: PROCEDURE, BODY and END-PROC are all required elements of
a procedure.

The easiest method to learn how to write procedure PDFs is to look
at examples. The following example is a very simple PDF which
creates a VICAR label for a dataset, copies that dataset, then
performs a linear stretch on the copy. Note that within this PDF
there is no declaration section. The declaration section is not
mandatory and is omitted in this case.

Example: A procedure to label and stretch an image.

Procedure !1
Body !2
label-create a.raw a.img nl=100 ns=200 !3
copy a.img b.img !4
stretch b.img b.str linear=(54,199) !5
End-proc !6

Line 1 defines that this proc is a procedure.
Line 2 defines that the body of the procedure follows
this

line.
Line 3 creates a label for a raw image with 100 lines
and 200
 samples.
Line 4 executes the VICAR program COPY, creating a
second,
 identical image.
Line 5 executes the VICAR program STRETCH, performing
a linear

 stretch from 54 to 199 on the image.
Line 6 defines that the end of the proc has been
reached.

Additional sample PDFs can be found in Appendix 10.11.

7.3.2 Process Definition Files (PDFs)
A process is a program of executable code and all programs
require a process PDF. A process PDF may specify:

* the process parameters
* Local variable declarations
* the Globals referenced by the process
* the process subcommands
* the location of the proc's executable program
* the location of the proc's help text
Syntax: A process PDF, conforming to recommended standards.

Process [EXECUTE=executable_file
HELP=help_location]

Parm NAME1 description1
Parm NAME2 description2

.

.

.
End-proc

Example: Process PDF for VICAR program COPY.

 process help=*
 PARM INP TYPE=STRING
 PARM OUT TYPE=STRING

 PARM SIZE TYPE=INTEGER COUNT=0:4 DEFAULT=--
 PARM BANDS TYPE=INTEGER COUNT=0:2 DEFAULT=--
 PARM SL INTEGER DEFAULT=1
 PARM SS INTEGER DEFAULT=1
 PARM SB INTEGER DEFAULT=1
 PARM NL INTEGER DEFAULT=0
 PARM NS INTEGER DEFAULT=0
 PARM NB INTEGER DEFAULT=0
 PARM FORMAT KEYWORD
VALID=(BYTE,HALF,FULL,REAL,DOUB,COMP) +

DEFAULT=BYTE
 PARM INSIZE INTEGER COUNT=0:3 DEFAULT=--
 PARM ORG KEYWORD VALID=(BSQ,BIL,BIP) DEFAULT=BSQ
 PARM BLOCK TYPE=KEYWORD VALID=(BLOCK,NOBLOCK)
DEFAULT=BLOCK
 PARM BINARY TYPE=KEYWORD VALID=(BINARY,NOBINARY) +

DEFAULT=NOBINARY
 END-PROC
 .help
 Copy is a simple program which can be used to copy
all or
 .
 (See Section 7.3.4 for further
 information on Help files.)
 .

Additional sample PDFs can be found in Appendix 10.11.

7.3.3 Executing a PDF
If the user is new, or if the PDF is trying something new or tricky,
the user is advised to run the PDF through the syntax checker
(Section 6.4) before actually executing the proc on the host system.

Once a PDF has successfully passed through the syntax checker,
the user is ready to execute the proc. The user must next select the
mode in which to execute the PDF (Interactive, Asynchronous or
Batch). The use of the latter two modes has already been explained
in Section 5.2. If the Interactive mode has been chosen, all the user
needs to do is enter the proc name and any necessary parameters.

Example: Equivalent methods of proc invocation.

 VICAR>TAPE2DSK

or

 VICAR>TAPE2DSK.PDF

Whenever a user enters a command, a hierarchical library search
(Section 5.1) is initiated for a .PDF file of that name. If the PDF is
not located in any of the libraries, the user will be notified that an
illegal command has been entered.

7.3.4 Help Files
All procs which conform to the recommended standards have a
Help file associated with them. Help files contain the information
that the user will see when Tutor or Help information is requested
on a specific proc.

EXPERT The typical user will probably not bother to write the
Help file portion of a procedure PDF since the user designed the
PDF and will not require any assistance with the proc. However,
there are cases when a Help file is useful. For example, when a
procedure is very complicated, or when more than one person will
be using a proc (as in the case of the application programs).

EXPERT Help information on VICAR procs can be written in one
of two ways: as a separate text file with the name PROCNAME.HLP,
or as text appended to the end of the PDF. In the second case, the

PDF must include on the PROCEDURE or PROCESS command
line HELP=*. In either case, the format of the help information is
the same.

Syntax:

 .TITLE Title to appear on each Tutor and
Help

screen.

 .HELP Information on the proc itself,
typically including:

Purpose Purpose of the program.
ExecutionDescription of command line used to

execute the program.
Features Special features the user might like to

know about.
Examples Examples showing how the program can be

used.
Restrictions Any special restriction the user

should
be aware of.

Written by Programmer who originally wrote the
program.

Programmer Programmer currently responsible for
the

program.
Revision Version number and date.

 .LEVEL1 Header to tell VICAR that first
level

help on the proc's variables follows.
 .VARIABLE name1 Help information on name1 to be

displayed on the Tutor screen.
 .VARIABLE name2 Help information on name2 to be

displayed on the Tutor screen.

 .LEVEL2 Header to tell VICAR that second
level

or detailed help on the variables

follows.
 .VARIABLE name1 Detailed information on name1.
This text

is displayed on the "Help PARM" Tutor
command or on the VICAR command:
 HELP-PARM parm=name1 proc=proc_name

 .VARIABLE name2 Detailed information on name2.

 .END End of help text.

See Appendix 10.11 for examples of Help files.

EXPERT It is possible to get hardcopy printouts of the proc's Help
section. For formatted Help, use the HELP-HARDCOPY command to
create a disk file which may then be printed. For unformatted Help,
print the proc's .PDF file.

7.3.5 Global PDFs
EXPERT A Global proc defines Global variables. It may contain
references to other Globals and/or declarations of Local variables.
The Global PDF starts with "Global" and has no body.

Syntax:

Global [HELP=help_information_location]
definitions of Global variables
declarations of referenced Globals
declarations of Local variables
End-proc

Example: Sample Global PDF.

Global

Parm DATATYPE String Default=" "
Parm RUNSEQ Integer Default=0
Parm COLTBL String Default="default"
Parm SL Integer Default=1 (null value)
Parm SS Integer Default=1
Parm NL Integer Default=1340
Parm NS Integer Default=3360
Parm RES Real Default=8.
Parm REGION String Default="global"
End-proc

EXPERT Note: Globals may not be of type KEYWORD (Section
7.2.3.2).

7.3.6 Compiled PDFs
WIZARD A compiled PDF is created when the VICAR command
COMPILE is run on any process, procedure or Global PDF. During
compilation, the declaration statements are scanned for proper
syntax and symbol tables are generated. Because these steps do not
have to be repeated during the PDF execution, compiled PDFs
(with a .CPD extension) run faster than normal PDFs (.PDF).

WIZARD In order to compile a PDF, the following rules must be
observed when writing the proc:

* internal procs are not allowed prior to the body
* DEFGBL statements are not allowed
* the RUNTYPE and NAME fields of PROCESS and PROCEDURE
statements must be default
* the DEFAULT field of a parameter statement cannot be
dereferenced
* parameter qualifiers may not be declared
WIZARD Procs are compiled by using the COMPILE command.

Syntax:

 VICAR>COMPILE INPROC=input_pdf
[OUTPROC=compiled_pdf]

Example: Compile the proc TAXCALC.PDF.

 VICAR>COMPILE inproc=TAXCALC.PDF
outproc=TAXCALC.CPD

WIZARD The execution of a compiled PDF is identical to the
execution of a normal PDF. If the PDF resides within one of the
VICAR application libraries,VICAR automatically looks to see if a
.CPD version of the requested proc exists. If no compiled proc is
available then the .PDF is executed.

Example: Execute a program which has a compiled PDF.

 VICAR>BROWSE

WIZARD In this example, because the compiled PDF exists,
VICAR automatically executes BROWSE.CPD. However, if the
compiled PDF resides within a personal directory, the compiled
PDF must be explicitly specified unless the library has been
customized to select compiled PDFs first.

Example: Explicitly invoke the compiled version of TAXCALC.

 VICAR>TAXCALC.CPD (W2.DAT,INTEREST.DAT) 1040.DONE

WIZARD Additional information on compiled PDFs can be found
in the TAE Command Language User's Manual and the TAE
Command Language Programmer's Manual.

7.4 Script Files
EXPERT A Script file is a text file consisting of VICAR
commands used primarily for demonstration and test purposes.
None of the special commands required in a procedure (e.g., BODY)
are included in a script file. On the other hand, no parameters are
allowed either.

Example: Script file LOG.SCR

 F2 TEST.RED OUTTEST FUNC="100.*ALOG10(IN1)"
 STRETCH OUTTEST STRTEST LINE=(0,150)

EXPERT A SCRIPT file can be invoked with the intrinsic
command ENABLE-SCRIPT.

Syntax:

 VICAR>ENABLE-SCRIPT FILE=filename [COUNT=number]

 Where: FILE is the name of the SCRIPT file to
be

 executed. The file must be of the type
 .SCR in order to be properly executed.

 COUNT The number of times to execute the
script

 file. The default is to execute the file
 once. COUNT=ZERO causes the file to be

 repeated endlessly until aborted by a host
 interrupt sequence.

EXPERT The ENABLE-SCRIPT command causes VICAR to use the
specified script file for its "interactive" input. There is no hierarchy
search implemented for script files so the user should either be in
the directory containing the script file prior to entering VICAR, or
the user should fully specify the directory and filename in the
invocation. In addition, the datasets used by the script file must be
in the same directory as the script file or the directory should be
fully specified. Once invoked, TAE then sequences through the
script file, echoing each command as it is executed.

Example: Script file use in an interactive session.

 VICAR>ENABLE-SCRIPT LOG.SCR
 F2 TEST.RED OUTTEST FUNC="100.*ALOG10(IN1)"
 Beginning VICAR task F2
 F2 version 2-04-94
 F2 using byte table lookup
 FUNCTION EVALUATED 256 TIMES

 STRETCH OUTTEST STRTEST LINE=(0,150)
 Beginning VICAR task STRETCH
 STRETCH version 2-11-93

 *** LINEAR CONTRAST STRETCH MODE ***
 Linear Stretch: 0 to 0 and 150 to
255

7.5 Tape Handling
The following section covers tape handling for VICAR under
VMS only. There is no VICAR tape support under UNIX. It is
suggested that the standard operating system utilities such as tar
and dd be used for accessing tapes. VMS VICAR support of tape

handling may not continue in the future, and many applications
which have accepted tape inputs in the past will no longer do so.

When running under VMS, operations involving magnetic tapes
are handled within VICAR with the commands ALLOC, MOUNT,
REWIND, DISMOUNT and DEALLOC (see Section 10.4). Both foreign
and ANSI labelled tapes are supported, as are blocked tapes (those
with multiple logical records per physical record). All applications
which accept tape inputs require that the tapes be previously
MOUNTed.

The ALLOC command assigns a symbolic name to the allocated
device. All other tape commands use that symbolic name to access
the device. In addition, the MOUNT command uses many of the same
qualifier names as the DCL MOUNT command. However, ANSI-
labelled tapes are identified by the presence of the LABEL
parameter.

The syntax for referencing a particular file on a tape uses the "/"
character. The symbolic name of the tape is suffixed by a
"/file_number" string.

Example: Accessing file 10 on tape IN.

 VICAR>COPY IN/10 X

It is not necessary to rewind the tape for VICAR to access the
proper file number. VICAR always keeps track of the current file
number and handles file number regressions properly.

Example: Tape processing under VMS.

 VICAR>ALLOC MT: IN !allocates first available
!MT: drive and assigns

 !symbolic name IN
 VICAR>MOUNT IN + !tape mytape is mounted
foreign,
 VICAR>+ comm="mount mytape" !unblocked and for read
 VICAR>COPY IN/4 A !copy file 4 into A
 VICAR>COPY IN/2 B !copy file 2 into B
 VICAR>REWIND IN !tape is rewound
 VICAR>DISMOUNT IN !tape is dismounted
 VICAR>DEALLOC IN !device is deallocated

BEWARE Device allocations may be performed at any time in a
VICAR job or session. However, in practice, jobs should do all
allocations at the beginning of the job stream, and do them as a
group. This is because, in general, the job is started when the
resources become available, but there is no guarantee that they
will stay available.

Users may exit VICAR and reenter with confidence that any tape
drives will remain allocated, mounted and at the same position
unless a Control-Y was used to exit. Exiting by Control-Y will lose
dummy names associated with devices, asynchronous jobs and
some allocated devices. Tape drives that had been allocated and
mounted will remain mounted, but VICAR will know nothing
about them.

Tape drives allocated within VICAR may be accessed from
VICAR's DCL mode. Such access must, of course, be
accomplished with DCL tape handling commands.

BEWARE Tape drives allocated within VICAR are not available
to the user outside VICAR (and vice versa). This is because the
VMS process and the VICAR may not share resources.

The general tape handling utility, TAPES, is not a standard VICAR
proc and may not be invoked from VICAR. It may be invoked
from VICAR DCL mode or from the user's VMS process. Because
of the non-standard nature of TAPES, no VICAR user aids are
available for it. However, there is on-line help for TAPES in DCL.

Syntax:

 $ HELP TAPES

Hardcopy help for TAPES is obtainable using the following
sequence of DCL commands.

Syntax:

 $ HELP/OUT=TAPES.HLP TAPES
 $ HELP/OUT=TAPES1.HLP TAPES*
 $ PRINT TAPES.HLP, TAPES1.HLP

Note: "/OUT" must immediately follow HELP and not TAPES or
TAPES*.

7.6 Session Logging
VICAR gives the user the ability to create a log of their interactive
session activity. This option is enabled and disabled with the
ENABLE-LOG and DISABLE-LOG commands. When enabled, this
option creates or appends to two files called session.log and
session.tsl. The .log file reflects the commands and responses
as they appear on the standard output, while the .tsl file supplies
additional useful information (e.g., a full list of proc parameters).

A new pair of session files is created at the initial ENABLE-LOG
command after entry into VICAR. Further ENABLE-LOGs (after
DISABLE-LOGs, of course) within a given session will append
information to the existing files. Once the DISABLE-LOG option is
selected, the files are closed and may be accessed, reopened, or
printed.

At the current time, there are still some problems with session
logging on the UNIX system. In batch log files, items often appear
out of order, and FORTRAN programs do not appear at all. In
interactive sessions, the session.log file is usually correct, but the
session.tsl file can occasionally be out of order.

7.7 Sample Interactive Session
The following example shows a Synchronous or Interactive
VICAR session. The commands are all entered from Command
mode and perform several basic tasks. The reader may follow this
session exactly or embellish it as desired for practice.

$ VICAR

Welcome to VICAR

 System Release 12.1
 Executive Version 5B/16B

 --- Type NUT for the New User Tutorial ---

 --- Type MENU for a menu of available applications --
-

VICAR>gen a 10 10 ival=2 sinc=0 linc=0
Beginning VICAR task gen
GEN Version 6
GEN task completed
VICAR>list a
Beginning VICAR task list

 BYTE samples are interpreted as BYTE data
 Task:GEN User:edd Date_Time:Thu Aug 11 15:05:44
1994
 Samp 1 3 5 7 9
 Line
 1 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2
 3 2 2 2 2 2 2 2 2 2 2
 4 2 2 2 2 2 2 2 2 2 2
 5 2 2 2 2 2 2 2 2 2 2
 6 2 2 2 2 2 2 2 2 2 2
 7 2 2 2 2 2 2 2 2 2 2
 8 2 2 2 2 2 2 2 2 2 2
 9 2 2 2 2 2 2 2 2 2 2
 10 2 2 2 2 2 2 2 2 2 2
VICAR>f2 a b.dat func="in1+10"
Beginning VICAR task f2
Beginning VICAR task f2
F2 version 2-04-94
F2 using byte table lookup
FUNCTION EVALUATED 256 TIMES
VICAR>list b.dat
Beginning VICAR task LIST

 BYTE samples are interpreted as BYTE data
 Task:GEN User:edd Date_Time:Thu Aug 11 15:05:44
1994
 Task:F2 User:edd Date_Time:Thu Aug 11 15:06:16
1994
 Samp 1 3 5 7 9
 Line
 1 12 12 12 12 12 12 12 12 12 12
 2 12 12 12 12 12 12 12 12 12 12
 3 12 12 12 12 12 12 12 12 12 12
 4 12 12 12 12 12 12 12 12 12 12
 5 12 12 12 12 12 12 12 12 12 12
 6 12 12 12 12 12 12 12 12 12 12

 7 12 12 12 12 12 12 12 12 12 12
 8 12 12 12 12 12 12 12 12 12 12
 9 12 12 12 12 12 12 12 12 12 12
 10 12 12 12 12 12 12 12 12 12 12
VICAR>gen b 10 10 ival=4 sinc=0 linc=0
Beginning VICAR task gen
GEN Version 6
GEN task completed
VICAR>list b
Beginning VICAR task list

 BYTE samples are interpreted as BYTE data
 Task:GEN User:edd Date_Time:Thu Aug 11 15:12:38
1994
 Samp 1 3 5 7 9
 Line
 1 4 4 4 4 4 4 4 4 4 4
 2 4 4 4 4 4 4 4 4 4 4
 3 4 4 4 4 4 4 4 4 4 4
 4 4 4 4 4 4 4 4 4 4 4
 5 4 4 4 4 4 4 4 4 4 4
 6 4 4 4 4 4 4 4 4 4 4
 7 4 4 4 4 4 4 4 4 4 4
 8 4 4 4 4 4 4 4 4 4 4
 9 4 4 4 4 4 4 4 4 4 4
 10 4 4 4 4 4 4 4 4 4 4
VICAR>f2 (a,b) b.dat func="in1*in2+10" 'half
Beginning VICAR task f2
Beginning VICAR task f2
F2 version 2-04-94
F2 using hash table lookup
FUNCTION EVALUATED 2 TIMES
VICAR>list b.dat (1,1,10,10)
Beginning VICAR task list

 HALF samples are interpreted as HALFWORD data
 Task:GEN User:edd Date_Time:Thu Aug 11 15:05:44
1994
 Task:F2 User:edd Date_Time:Thu Aug 11 15:23:45
1994
 Samp 1 2 3 4 5 6 7 8 9
10
 Line

 1 18 18 18 18 18 18 18 18 18
18
 2 18 18 18 18 18 18 18 18 18
18
 3 18 18 18 18 18 18 18 18 18
18
 4 18 18 18 18 18 18 18 18 18
18
 5 18 18 18 18 18 18 18 18 18
18
 6 18 18 18 18 18 18 18 18 18
18
 7 18 18 18 18 18 18 18 18 18
18
 8 18 18 18 18 18 18 18 18 18
18
 9 18 18 18 18 18 18 18 18 18
18
 10 18 18 18 18 18 18 18 18 18
18
VICAR>copy a c
Beginning VICAR task copy
 COPY VERSION 12-JUL-1993
VICAR>list c
Beginning VICAR task list

 BYTE samples are interpreted as BYTE data
 Task:GEN User:edd Date_Time:Thu Aug 11 15:05:44
1994
 Task:COPY User:edd Date_Time:Thu Aug 11 15:27:50
1994
 Samp 1 3 5 7 9
 Line
 1 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2
 3 2 2 2 2 2 2 2 2 2 2
 4 2 2 2 2 2 2 2 2 2 2
 5 2 2 2 2 2 2 2 2 2 2
 6 2 2 2 2 2 2 2 2 2 2
 7 2 2 2 2 2 2 2 2 2 2
 8 2 2 2 2 2 2 2 2 2 2
 9 2 2 2 2 2 2 2 2 2 2
 10 2 2 2 2 2 2 2 2 2 2
VICAR>exit

%

8 Non-Standard Items
Contents

8.1 Proprietary Software
8.2 Facility-specific Hardware
8.3 VICAR I/O Formats
 8.3.1 Input/Output of VICAR Datasets
 8.3.2 Output of Non-VICAR Datasets
 8.3.3 Input of Non-VICAR Datasets

The VICAR software set has been designed with transportability in
mind, and the bulk of the software is truly transportable to other
machines, including those running UNIX. However, in order to
benefit by and utilize certain hardware and proprietary software
packages apvailable at the MIPS site, a subset of VICAR is
facility-specific (some is, in fact, machine-specific) and thus non-
standard. This subset will not work unless this hardware or
software is resident (see the system manager for configuration
details).

Transportation of data to or from a VICAR facility is supported in
either VICAR or non-VICAR format. A set of application
programs are available which convert from VICAR to specific
non-VICAR formats (e.g., Voyager EDR format), and from
specific non-VICAR formats (e.g., FITS format) to VICAR format.
The purpose of this section is to describe these subsets of VICAR,
the non-standard items.

8.1 Proprietary Software
Proprietary software packages utilized by VICAR applications
procs are:

* the VAX Datatrieve data management system from Digital
Equipment Corporation
* the Floating Point Systems (FPS) array processor library
* the PRINTRONIX plotting routines from Cerritos Computer
Systems Incorporated
* The Sybase data management system from Sybase for UNIX
* the Image Display Manager (IDM)
Specific procs which call or link to this proprietary software are
listed below and are described in more detail in Appendix 10.3.
Asterisks,"*", indicate that the proc will utilize proprietary
software if it is available, but, if not, will use less efficient but non-
proprietary software. Pluses, "+", indicate that the proc will utilize
proprietary software only in some of its operating modes. If the
proc name has no asterisk or plus, it will only be available on
systems with the specified software.

Procs which call Datatrieve:

AMOS BADLABELSBROWSE+ CATARCH
CATCD CATFILM CATIMAGE CATLABEL
CATLIST CATMRPSO CATNIMS CATPRODUCTS
CATRADIO CATREPORT CATSEARCH CATSEDR+
CATSLIST CATSPICE CDGEN DTRTAE
EDRGEN+ EDRVAL+ GALSOS GEDREAD+
GLLMASK GLLREQUEST GPWAUDIO LISTSEDR
LISTSEDX MAP2 MERGE NIMSCMM
NIMSMERGE NIMSMERGEX PPLOAD PWAUDIO
PWSMERGE SEDRGEN SRCH SRCHGEN
SSIMERGE STOREKDB UVF VEDR+
VGRMASK VISIS

Procs that link to the FPS array processor library:

APFLAG BROWSE+ EIGEN FFT1*
FFT2* FILTER* MGNCORR* PICMATCH*
R RCBR* RESTORW* TFILT*

WIENER XFORM*

Procs that link to IDM:

ANNOT EXPER MIDR_ARCHRDM
RDMINIT VIEW

Procs which link to Sybase:

GLLTELEMPROC

Procs which link to the CCSI routines:

STATPLOT

8.2 Facility-specific Hardware
Peripherals at the MIPS site include display processors, film
recorders, videodisk, array processor, terminals, personal
computers and plotters. Procs which are dependent upon specific
hardware are listed below and are described in more detail in
Appendix 10.3. Asterisks,"*", indicate that the proc will utilize
proprietary hardware if it is available, but, if not, will use less
efficient but non-proprietary hardware. If the proc name has no
asterisk, it will be available only on systems with the specified
hardware.

Hardware Required Procs

Array Processor - VAX only

 Floating Point Systems AP120B

APFLAG, FFT1*, FFT2*, FILTER*, FILTER2*,
PICMATCH, R, TFILT*, WIENER, XFORM*

Display Processors - VAX only

 Adage 3000, DeAnza 8500, I2S IVAS and Ramtek RM-
9465

 AMOS, BROWSE, CCDNOISE*, CCDRECIP*, CCDSLOPE*,
 DISPOUT, IDX, IFFT, IMP, INTERLOC*, LEONARDO,
 LOGMOS, MGNFIT*, NAV, NAV2, OTF1*, PHOTFIT2*,

PICREG, PLOT3D*, PLOTINT*, PLOTTING*,
PLTGRAF*, PLTSYM*, POWER*, QD, QPLOT*, RG*,
SARGON, SPAM, STERGEN,TIEPLOT*, UVFMAP*

 DeAnza 8500 only

EDIMAGE, FOOTPRINT

Film Recorders

 Matrix Quality Color Recorder, MDA Colorfire,
 MDA Laserfire, KODAK XL7700

BARNE, PHOTO, WILMA

Printers/Plotters - VAX only

 Calcomp 1044, Printronix P300 and P600, Regis- and
 Tektronix-compatible terminals

CCDNOISE*, CCDRECIP*, CCDSLOPE*, LEONARDO,
MGNFIT*, OTF1*, PHOTFIT2*, PLOT3D*, PLOTINT*,
PLOTTING*, PLTGRAF*, PLTSYM*, POWER*, QPLOT*,
RG*, TIEPLOT*, UVFMAP*

 Printronix P300 and P600

STATPLOT

PWS Audio Generator (a JPL-built device) - VAX only

GPWAUDIO, PWAUDIO, PWECHO

8.3 VICAR I/O Formats
Transportation of data to or from a VICAR facility is performed
using tape media, cd-rom or network transfer. VMS VICAR
supports tapes with and without ANSI labels. The tape densities
that are supported are 800, 1600 and 6250 on 9 track tape. 8mm
and 4mm data tapes are also used. The data transfer is
accomplished with applications procs. The tape handling
commands are ALLOC, DEALLOC, MOUNT, DISMOUNT and REWIND. For
UNIX, a simple tar command will transfer data to either 8mm or
4mm data tapes. The network can be used to transfer data as long
as the VICAR site has an anonymous FTP.

8.3.1 Input/Output of VICAR Datasets
VICAR is able to output data in a format that most other sites can
handle. Under VMS, the capability exists to output datasets with or
without VICAR labels, either blocked (n logical records per
physical record) or unblocked (1 logical record per physical
record). The procs LABEL-REMOVE or COPY are generally used for
this purpose.

8.3.2 Output of Non-VICAR Datasets
Using the VICAR I/O subroutines (see the VICAR Run-time
Library Reference Manual), it is possible to generate output
datasets in any format desired. The programs which currently do

this and their output formats are described below. For program
descriptions, see Appendix 10.3.

PROGRAM FORMAT

BIDRSIM Multimission SAR Processing Lab Basic
Image Data
 Record
EDRGEN Voyager Experiment Data Record
PSCRIPT Converts VICAR images into a Postscript
file
TAPES optionally, EBCDIC
VCOPOUT ASCII Text
VMAC Transfers data between PICT or TIFF format

images and IMG files
VTIFF Convert between VICAR labeled images and
TIFF

format files
WRISOUT U.S. Forest Service WRIS exchange format

8.3.3 Input of Non-VICAR Datasets
Unlabeled tape datasets, blocked or unblocked, can be converted to
VICAR format using the proc CONVIM or LABEL-CREATE. However,
special purpose programs, called logging programs, are often
written to extract special information from the data, construct
special VICAR labels or unpack the data in unique ways. The
programs which currently do this and their input formats are listed
below. For program descriptions, see Appendix 10.3.

PROGRAM FORMAT

AFEWCLOG Air Force Electronic Warfare Center terrain
data
AVHRRLOG Advanced Very High Resolution Radiometer

BIDRLOG Multimission SAR Processing Lab Basic
Image Data
 Record
CONR4FIL CONVIM'd IBM floating-point files
CONVIM General blocked or unblocked tape files
DEMLOGA USGS Digital Elevation Model
DTTLOG A National Cartographic Information
Center 1x1
 degree Digital Elevation Model
INTCON IBM IBIS interface (tabular) files
SDRLOG Voyager System Data Record
SWAPPER CONVIM'd IBM 16-bit integer files
TAPES EBCDIC
VDEMLOG Digital Elevation Model
VEDR Voyager Experiment Data Record
VERTSLOG Landsat 1-3 ERTS
VFITS2 FITS
VGLAS0 Goddard Laboratory for Atmospheric
Sciences
VGLLOG Galileo calibration files
VGOES Geostationary Operational Environmental

Satellite
VGRLOG Voyager Experiment Data Record
VMDPIN Goddard MDP ground control points
VNEPRF Naval Environmental Prediction Research
Facility
VOLOG Viking Orbiter Experiment Data Record
VQUIC ASCII text
VWRIS Wild Land Resource Inventory System

9 Advanced VICAR Concepts
Contents

9.1 Dataset Structure
9.2 VICAR Label Structure

EXPERT This section expands on two basic concepts introduced
in Section 4: datasets and labels. More detailed information on
dataset and label structure can be found in The VICAR File
Format.

9.1 Dataset Structure
EXPERT The standard structure for VICAR datasets is a file of
fixed-length records which consists of the parts listed below.
Figure 9.1 is a visual representation of the dataset structure.

* VICAR label (Section 9.2)
* binary label header - optional
* binary label prefix - optional
* pixel data
* end-of-dataset label (EOL; Section 4.4) - optional
EXPERT The binary label is an optional area for storing
information about a dataset in free-form binary format. The data in
the binary label are not defined by the executive, but by the
individual applications. There are two parts to the binary label, the
binary header and the binary prefix. The binary header is useful for
storing information which may pertain to the entire dataset. The
binary prefix consists of a fixed number of bytes from each pixel
data line and is useful for storing line-dependent information (e.g.,

marking "bad" data). The binary label is hidden from programs
unless they specifically request access to it. If a program does
request access, the binary label is then treated as a part of the data.
If access is not requested, the binary label will not be present in the
output dataset.

EXPERT The pixel data portion of a dataset may contain between
1 and 2.147E9 (2 to the power of 31, minus 1) lines, each of the
same length. The maximum length is dependent upon the storage
device. Each line is a sequence of pixels whose format is
represented by 1, 2, 4 or 8 bytes (Table 4.3.3) and is fixed for a
given dataset. In the "picture" interpretation, each line of a dataset
represents one raster scan line. The sequence of lines represents the
sequence of raster scan lines beginning with line 1 and proceeding
down. Multi-dimensional pixel data can be organized in one of
three ways: band-sequential (BSQ), band-interleaved by line (BIL)
or band-interleaved by pixel (BIP). Additional information on
multi-dimensional pixel data organization can be found in the
VICAR Run-time Library Reference Manual.

9.2 VICAR Label Structure
EXPERT The VICAR label is an ASCII string containing free-
field items of the form keyword=value (Section 4.4.1) separated
by spaces.

EXPERT The VICAR label contains three classes of information.
Dataset description ("system") items describe the size,
organization, data format, and existence of the optional sections of
the dataset. "Property" items describe properties of the image in
the image domain, such as the map projection, lookup table, and
latitude/longitude information. "History" items describe the history
of the pixel data in the dataset, the procs that have processed the

pixel data, sometimes their parameters, the user identification, and
the processing date and time.

EXPERT System items in the VICAR label include, in order:

LBLSIZE the size of the label in bytes
FORMAT the data format of the pixels in the
image

(byte, half, full, real, doub, or comp; word
long, and complex may also be found but are
obsolete)

TYPE the dataset type (image, param, graph1, graph2
graph3, tabular)

BUFSIZ (obsolete, but still required; set it
equal to

RECSIZE in new files) the internal blocksize
VICAR will use during I/O

DIM the number of dimensions in the file (always
equals 3)

EOL end-of-dataset label (if there is an EOL,
EOL=1)
RECSIZE the size in bytes of each record in the
VICAR

file
ORG data organization:

BSQ band sequential
BIL band interleaved by line
BIP band interleaved by pixel

NL number of lines (number of records)
NS number of samples (record length)
NB number of image bands (number of data planes)
N1 equal to NS or NB depending on pixel data

organization (ORG - Table 9.2)
N2 equal to NL, NS or NB depending on pixel data

organization (ORG - Table 9.2)
N3 equal to NB or NL depending on pixel data

organization (ORG - Table 9.2)
N4 not yet used; defaults to 0
NBB number of binary prefix bytes
NLB number of binary header records
HOST the type of computer used to generate the

image (alliant, cray, decstatn, hp-700,
mac-aux, mac-mpw, sgi, sun-3, sun-4, tek,
vax-vms)

INTFMT format used ot represent integer pixels
(byte, half, and full) in the file. (low, for
vax-vms and decstatn; high for all other
except cray, which isn't implemented yet)

REALFMT format used to represent floating-point
pixels (real, doub, and comp) in the file.
(rieee for decstatn; vax for vax-vms; ieee
for all others except cray which isn't
implemented yet)

BHOST type of computer used to generate the
binary label. (same values as HOST)

BINTFMT format used to represent integers in the
binary label (same values as INTFMT)

BREALFMT format used to represent floating-point
data in the binary label (same values as
REALFMT)

BLTYPE type of binary label

--

DIM ORG

BSQ BIL BIP

N1 NS NS NB
N2 NL NB NS
N3 NB NL NL

 Table 9.2 VICAR Data Organization

--
EXPERT Property labels are located between the system and the
history labels. They begin with the first occurrence of the keyword
PROPERTY and end with the first occurrence of the keyword TASK.
A dataset may exclude property labels entirely. Each property
begins with a PROPERTY keyword, which is the name of the
property set. This is followed by the label items that make up the

property. The valid property names, and the keywords that make
up each property, are defined in a name registry maintained by the
VICAR system programmer.

EXPERT History items in the VICAR label include:

TASK a proc that has processed the dataset
USER user identification (login id.)
DAT_TIM processing date and time
optional items added by the application proc listed
under task

Example: History items added by VICAR

TASK='RESSAR77'
USER='USERID'
DAT_TIM='Wed Nov 12 19:06:24 1986'
PIX_CNT=22259
PARMS='AUTO-STRETCH: 0 to 0 and 138 to

255'

EXPERT The contents of a VICAR label may be listed either as
formatted ASCII or as an ASCII dump (Appendix 10.12).

10 APPENDIX
Contents

10.1 VICAR Proc Function Definitions
10.2 Classification of VICAR Procs by Function
10.3 Standard VICAR Procs and their Functions
10.4 VICAR Intrinsic Commands
10.5 VICAR Command Qualifiers
10.6 VICAR Intrinsic Global Variables
10.7 MENU Mode User Operations
10.8 TUTOR Mode User Operations
10.9 TUTOR Mode Line Editing Keys
10.10 Command Line Editing Keys
10.11 Examples of Proc Definition Files (PDFs)
10.12 Examples of VICAR Labels
10.13 VICAR Message Explanations
10.14 The VICAR New User's Tutorial
 10.14.1 New User Tutorial Listing

10.1 VICAR Proc Function Definitions
This section briefly defines the classes into which VICAR procs
may be classified. See Section 10.2 for lists of which procs fall into
which classes.

Annotation
Superimpose text on or around an image

Arithmetic Functions
Arithmetic operations.

Atmospheric Features Analysis
Collect feature tiepoints and statistics

Blemish, Noise & Artifact Removal

Locate, remove, classify, or modify blemishes, noise or artifacts

Brightness Corrections
Match brightness or remove gradients

Calibration
Generate and/or remove intrinsic transfer functions

Catalog & Database Management
Manipulate or modify databases

Color
Analyze, enhance or reconstruct color imagery

Contrast Enhancement
Enhance the contrast of images

Data Compression
Compress or decompress data

Data Format Manipulation
Change data from one format to another (e.g., halfword to byte)

Data Transfer (logging)
Transfer VICAR data from one storage medium to another (e.g.
tape to disk, disk to disk)

Display
Interactive display of images

Film Recording
Generate a film product from a VICAR file

Filtering
Perform image filtering

Foreign Data Transfer
Transform or log foreign data to or from the VICAR format

Fourier Transforms
Transform image to/from, or operate on an image in the Fourier
Transfer domain

Galileo Specific Programs
Programs written specifically for the Galileo mission.

Geometric Tranformations
Change the spacial characteristics of an image (e.g., the shape)

Graphics
Superimpose graphics within an image

Histogram Generation
Generate histograms

IBIS Data Transfer
Transform or log IBIS data to or from the VICAR format

IBIS Programs
Programs which utilize the IBIS data format.

Labels
Display, create, remove or modify VICAR labels

LANDSAT Specific Programs
Programs written specifically to handle LANDSAT data.

Listings
Examine data values within a file (e.g., look at DN numbers)

Magellan Specific Programs
Programs written specifically for the Magellan mission.

Magnification & Reduction
Alter the image size

Map Projections
Alter the image projection

Mars Observer Specific Programs
Programs written specifically to process data from the Mars
Observor Camera

Mask Generation
Reformat data and generate a mask around the data, suitable for
film recording

Modification
Modify or operate on image subareas

Mosaic Generation
Generate a mosaic

Multispectral Analysis
Identify regions in multiple data planes

Pattern Recognition & Location
Identify or locate objects within an image

Photometry
Apply or determine photometric functions

Planetary Data Transfer
Transform or log planetary data to or from the VICAR format
(e.g., Voyager, Viking)

Planetary Navigation
Determine camera viewing geometry

Plotter Displays
Generate plots

Registration
Find correspondence between 2 or more images

Reseau Location & Removal
Locate and remove reseau and fiducial marks from Voyager and
Viking Orbiter images

Rotation
Change image orientation by rotating

Statistics
Collect, extract and/or display statistical information about an
image

Stereo
Create or process stereoscopic image pairs

Synthetic Data Generation
Generate synthetic or simulated data

Tape Utilities
Perform magnetic tape functions

Tiepointing
Generate, modify or transform tiepoints

Utilities

Miscellaneous utilities (e.g., parameter passing, sending messages
to system operator, current date and time etc.)

Viking Specific Programs
Programs written specifically to support the Viking mission.

Voyager Specific Programs
Programs written specifically to support the Voyager mission.

10.2 Classification of VICAR Procs by
Function
A major strength of the VICAR system is the flexibility of its
software set. This feature, however, makes clear classification of
procs by function a difficult task. Many procs have a primary
function, but may perform other secondary tasks that may also be
useful. For example, the proc AMOS performs planetary
navigation, but its main function is atmospheric motion analysis.
Therefore, in the lists that follow, proc names in uppercase denote
the primary function, and those in lowercase denote a secondary
function.

Annotation

EDIMAGE FONT MASKV STARLAB
TEXTAD

Arithmetic Functions

AVERAGE DIFPIC F2 F2_3D
F2COMP fastmos GF LAVE
MF NF2 PICSUM qsar
RATIO sargon sargonb XFORM
ZINTERP

Atmospheric Features Analysis

AMOS UVECTOR UVF UVFMAP
UVFSTATS

Blemish, Noise & Artifact Removal

ADESPIKE BLEMFIX BLEMGEN BLEMPIC
BLEMVORB CCDNOISE CONCOMP1 DROPOUT
DS4 GLLBLEMCOR INSERT lave
MERGE OSBLEMLOCREPAIR RESSAR75
RESSAR77 sargon sargonb SIMPLIFY
VGRBLEM VGRFILLIN

Brightness Corrections

GEOMZ GETZVAL GRADREM GRAFIMG
MZGEOM PHOTFUNC PIXGRAD

Calibration

ABLE86 CCDNOISE CCDRECIP CCDSLOPE
DC FICOR77 FICOR86 FICORGEN
FIXLOC FIXVGR GALGEN GALSOS
GETLOC GLLCALNAME GLLPFCF GRIDGEN
GRIDLOCB INTERLOC LTGEN MJSPFCF
MOMGEN otf1 PICSUM SOS
SPLITCAL VGLLOG XLOCUS

Catalog & Database Management

AGGRG AGGRG2 CAMPARAM CATARCH
CATCD CATFILM CATIMAGE CATLABEL
CATLIST CATMRPS0 CATNIMS CATPRODUCTS

CATRADIO CATREPORTCATSEDR CATSLIST
CATSPICE CNT COUNT DTRTAE
EDRVAL LISTSEDR MERGE MOCINDEX
NXT PHOTOM PPLOAD RESET
SRCH SRCHGEN STARCAT STARCAT2
VOLSTSDR VOSDRIBIS

Color

COLOR COLORT CSEND DNSYMBOL
EDIMAGE EIGEN GIACONDA GLLCOLOR
IDX LEONARDO LOOKUP MAPGEN
PAINT PAINTG3 RGB RGB2PSEUDO
TRISTIM TRUCOLOR VLOOKUP

Contrast Enhancement

ASTRTCHR color FIT HSTRETCH
idx LOOKUP MAPGEN SSTRETCH
STRETCH STRETVAR

Data Compression

BTC_COMP BTC_DECOMP CBIDRGEN DEBARC
HUFFCODE ICTCOMP ICTDECOMPMGNSIZE
RUNCODE STRPMTCH VGRPWS

Data Format Manipulation

C CCOMP fit

Data Transfer (logging)

AVHRRLOG COPY DEMLOGA DTTLOGA
label LOGMOS PIDRLOG TAPES

VDEMLOG VERTSLOG VGLLOG VGRLOG
VOLOG vsar

Display

BROWSE DISPLAYS DISPOUT edimage
FOOTPRINTIDX IFFT IGIS
IMP leonardo QD SHOWDISP
STEREOPICVIDS XVICDISP

Film Recording

BARNE PHOTO QKLK WILMA

Filtering

APODIZE BICUBIC BOXFLT2 CONCOMP1
FFT1AP FIL2 FILTER FILTER2
FILTERAP FILTEREM GIACONDA GLLCOLOR
MEDIAN SBOXFLT SHADY SHADY2
SIMPLIFY TFILT TFILT0 TRUCOLOR
WIENER

Foreign Data Transfer

AFEWCLOG AVHRRLOG CONR4FIL CONVIM
DEMLOGA DTTLOGA GRAF2DGN SWAPPER
TOXYZ VDEMLOG VERTSLOG VFITS2
VGOES VSAR XSECT

Fourier Transforms

APODIZE FFT1 FFT11 FFT1PIX
FFT2 FFT22 FFTCLAS FFTFIT
FFTFLIP FFTMAG FFTMAGIC FFTPIC

FT2 FTPACK IFFT MEM
OTF1 POWER PSF RESTORW
WIENER

Galileo Specific Programs

ABLE86 AMOS BLEMGEN BLEMPIC
CATCD CATLABEL CATMRPS CATMRPS0
CATRADIO CATREPORTCCDNOISE CCDRECIP
CCDSLOPE DEBARC FICOR86 GALGEN
GALSOS GEDREAD GEDRGEN GEDRLIST
GEDRVAL GLLBLEMCOR GLLCALNAME GLLCAMPAR
GLLCOLOR GLLFILLINGLLGCOR GLLMASK
GLLPFCF GLLPSF GLLREQUEST GPWAUDIO
GPWS GPWSFORMAT GPWSMASK GPWSSIM
GREDRGEN GRIDGEN ICTCOMP ICTDECOMP
MANUAL3 MANUAL4 PICSUM PWAUDIO
PWECHO PWSMEK SCTOMARK SHUTOFF
SPLITCAL SSIMEK VGEDR VGLLOG
VGSDR XLOCUS

Geometric Tranformations

ARDREC C130RECT FLOT GEOM
GEOMA GEOMREC KEPLER LGEOM
map2 maptrans MGEOM MZGEOM
POLARECT POLYGEOM POLYREG PTP
RING ROTATE size

Graphics

ADL BOXGEN CONTOUR GRID
IDX MAPGRID MARK OVERLAY
POLYSCRB SHADY STERMAP UVECTOR
UVFMAP

Histogram Generation

fit HIICCUP HIST HIST2D
HISTGEN idx maskv multovly
SHIST vgrmask

IBIS Data Transfer

INTCON VCOPOUT VMDPIN VQUIC
VWRIS WRISOUT

IBIS Programs

AGGRG AGGRG2 BIDDRINDXCATFILE
COLOR CONTOUR COPYFILE CORNER
CTRMATCH DGN2GRAF EDIBIS G3APPEND
G3GEN G3LIST GETZVAL GR2GEN
GR2IM GR2POLY GR2REP GRAF2DGN
GRAFIMG GRLIST GRUTIL HEX2INT
HEXGEN HICCUP IBIS IBISGCP
IBIS2TCL IBISLSQ IBISNAV IBISNBR
IBISREGR IBISSTAT IBISUPDATE IGENER
INTCON LINEMTCH MAPGEN MF
MSSIBIS MULTOVLY OMC OMCOR
PAINT PAINTG3 PCOPIN PCOPOUT
PHOTFIT2 PHOTOM PICMATCH PLANETCNV
PLOT3D PLOTINT PLTGRAF PLTSYM
POLYCLIP POLYCON POLYGEN POLYGEOM
POLYMAP POLYMASK POLYPMAP POLYPNT
POLYREG POLYSCRB QREP QUERYLAB
RASTOGRAFRASTOVEC REPORT RIV2HEX
ROADHEX ROWOP RUNCODE SDSIBIS
SORT TIEPARM TIEPLOT TOIBIS
TRANSCOL VCOPOUT VGRBLEM VGRIBIS
VMDPIN VOSRIBIS VQUIC VWRIS
WRISOUT XYZPIC ZINTERP ZIPCOL

Labels

BADLABELSCLABEL GETLAB GETPWS
LABEL LAB2TCL LABLIST LABSWTCH
LABVFY MAPLABPROG QUERYLAB SLABEL
STARLAB VCOPY VSAR

LANDSAT Specific Programs

DS4 THERMMOS TIPSMOS VERTSLOG

Listings

BWSEND CSEND DISPARMS DNSYMBOL
G3LIST GR2REP GRLIST idx
LIST PRINTPIX PRNTIM QREP
REPORT XVPLIST

Magellan Specific Programs

BANRMOV BIDRINDX BIDRLOG BIDRSIM
BIDRLOG C_BIDR CBIDRGEN CONTENTS
CUMDIR FBIDR_DIRF FINDTIE FRAME
GAIN GMASKMGN LISTLOCS LOGMOS
MASKMGN MGNDIRNAME MGNFIT MGNSIZE
MGNZPAD MIDR MIDR_ARCH MIDR_INSERT
MIDRPOS OVERLAP PDIR_ARCHPFASTMOS
PMASKMGN RCBR RDM RFMINIT
SFASTMOS SIPHON tapesiphon TIESIM
V2BIDR VIEW

Magnification & Reduction

FULLSIZE idx SIZE

Map Projections

FOOTPRINTLOOKUP MAP MAP2
MAP3 MAPGEN MAPGRID MAPMATCH
MAPTRAN MAPTRAN3 MAPTRANS MAPTRANS2
MASKMOS PERSLAB POLARECT POLYMAP
POLYPMAP PTP RING STERMAP
THERMMOS TOTOPO UVECTOR UVF
UVFMAP UVFSTATS UVMAP VLOOKUP
VWRIS XFORMAP

Mars Observer Specific Programs

BTC_COMP MOCINDEX MOCSUMMARY

Mask Generation

FMASK GLLMASK GMASKMGN GPWSMASK
HSTRETCH MASKMGN MASKMOS MASKV
MOCMASK NIMSMASK PMASKMGN POLYMASK
VGRMASK

Modification

EDIMAGE FMASK LEONARDO MAPGEN
PAINT PAINTG3 POLYMASK QSAR
SARGON SARGONB STRPMTCH XYZPIC
ZCIRCLE ZFILL

Mosaic Generation

APPEND AUTOMATCHDPOLYCUTSFASTMOS
IBISGCP INSECT KEYMOS1 LOGMOS
MANMATCH MANUAL MAPMATCH MESURMOS
MESURMOSCAHV MGNFIT MOSPLOT MSS
NEWMOS OMCOR RAPIDMOS SFASTMOS
THERMMOS TIPSMOS

Multispectral Analysis

CLUSAN DENDSTAT EDSTATS EIGEN
EIGENVEC FASTCLAS IMP MSS
MSSIBIS NIMSMASK rgb SIMPLIFY
SPAM STATS USTATS

Pattern Recognition & Location

CORNER FASTCLAS GRIDLOCB INTERLOC
PRNTIM STARCAT ZCIRCLE

Photometry

PHOTFIT2 PHOTFUNC PHOTOM PHOTTEST

Planetary Data Transfer

GET_SFDU EDRGEN PIC2VIC SIPHON
tapesiphon VEDR VGEDR VGLLOG
VGRLOG VGSDR VMAC VOLOG

Planetary Navigation

amos FARENC GETSPICE map2
MGNCORR NAV NAV2 NEARENC

Plotter Displays

IMP otf1 PLOT3D PLOTINT
PLOTTING PLTDGN PLTGRAF PLTSYM
POWER QPLOT rg STATPLT
TIEPLOT

Registration

GEOM GEOMA INSERT LGEOM
MGEOM MZGEOM PICMATCH PICREG
R RG TOPTRANS

Reseau Location & Removal

FIXLOC RES77 RESLGEN RESLOC
RESLOCVO RESSAR75 RESSAR77

Rotation

FLOT ROTATE xlocus

Statistics

CLUSAN CLUSTEST DENDSTAT DIFPIC
EDSTATS EIGEN F2 FASTCLAS
HIST HISTGEN IBISLSQ IBISREGR
IBISSTAT IMP LAVE LIST
MAXMIN MF MSSVIEW PIXGRAD
PIXSTAT SDSIBIS SLIST SPAM
STATPLT STATS USTATS UVFSTATS

Stereo

STEREO STEREOPICSTERGEN STERMAP

Synthetic Data Generation

CELLGEN FRACGEN GAUSNOIS GEN

GENTHIS PHOTTEST POLYNOIS RADAGEN
SPOT TESTGEN

Tape Utilities

ADDON ALLOC CONVIM COPY
DEALLOC DISMOUNT MOUNT MTCLEAR
REWIND SFDULOG TAPES

Tiepointing

convpr convrp corner getloc
locus MANMATCH MAPMATCH OMCOR2
PICMATCH picreg R
rg STERGEN STERMAP tieconm
tieparm TIEPLOT TOTOPO TPTCOORD
TPTEDT TPTEDT2 TRACKER TRACKER2
TRACKER3 xvplist

Utilities

AL APFLAG CAMPARAM DATETIME
DTRTAE FORM GETLAB IBIS2TCL
LAB2TCL MENUTREE REQUEST SYNTAX
TRANSLOG USERNAME V2VERSIONWILDCARD

Viking Specific Programs

BLEMVORB DROPOUT OMCOR PLANETCNV
RESLOCVO RESSAR75 SOS VOLOG
VOLSTSDR VOSDRIBIS

Voyager Specific Programs

AMOS BLEMFIX BROWSE CAMPARAM

CATIMAGE CATLIST CATSEDR CATSLIST
EDRGEN EDRVAL FARENC FICOR77
FICORGEN FIXLOC FIXVGR FOOTPRINT
GRIDGEN IMLIST KEPLER LISTSEDR
MERGE MJSPFCF NAV NAV2
NEARENC OSBLEMLOCPHOTFIT2 PHOTFUNC
PHOTOM PPLOAD PTP PWAUDIO
PWECHO QKLK RADIANCE RES77
RESLGEN RESLOC RESSAR77 RING
SEDRGEN SRCH UVECTOR UVF
UVFMAP UVFSTATS VEDR VGRBLEM
VGRFILLINVGRIBIS VGRLOG VGRMASK
VGRPWS

10.3 Standard VICAR Procs and their
Functions
Certain VICAR procs make use of facility-specific or propietary
hardware devices or software packages. The lack of these
resources may cause a given proc to fail. Procs with this
characteristic are denoted in this section by symbols in the NOTE
column. "Required" means that the proc will not function without
the indicated resource. "May be required" means that the proc is
probably a procedure which will call one program if the resource is
available and another if it is not.

Also included in the NOTE column is an indication of the whether
or not the proc has been ported to UNIX yet, or whether a proc is
obsolete. (Obsolete programs may still be available, but are no
longer supported.)

The symbols in the column "NOTE" are:

A - Array processor required
A* - Array processor may be required

C - CCSI routines required
D - Datatrieve required
D* - Datatrieve may be required
F - Film recorder required
G - Audio generator required
I - Interactive display required
I* - Interactive display may be required
L - DEC LA50 printer required
N - Intergraph hardware required
O - Obsolete or unsupported software.
P - Procedure
R - Rainbow PC graphics required
T - Device-independent plotting performed
U - Have not yet been ported to UNIX, but

will be in the future.
V* - VLSI filter device may be required
X - Will not be ported to UNIX.

VICAR
PROC NOTE FUNCTION

ABLE86 OX Extracts data from the Galileo SSI
flight and

ground calibration labels.
ADDON OX Advances a tape to the end of the last
file or

to a position after any given number of files.
ADESPIKE Detects pixel spikes and removes them by

averaging adjacent pixels. Single missing
lines

are also filled in.
ADL O Adds a line to an image by adding a
constant

value to pixels specified by endpoints.
AFEWCLOG OX Reads the Air Force Electronic Warfare
Center

digital terrain database and produces VICAR
images.

AGGRG O IBIS program aggregating columns of
numbers

using any designated column of the file as a

control column.
AGGRG2 O IBIS program collapsing columns of
numbers in

an interface file into smaller columns using
a designated column as the control.

AL U Allocates disk image files.
ALLOC X Allocates a tape drive to the user.
ALT_DAILY X Processes a nominal set of 7 consecutive
orbits

of ALT-EDR data from one input tape into 7
BADRS.

ALTSIM X Generates the orbital intermediate files
for

MIPL-MGN processing of altimetric/radiometric
data.

AMOS DIU Interactive program supporting
Atmospheric

MOtion Studies on Voyager and Galileo images.
ANNOT U Accesses the britton-lee database and
returns

the database output to a file specified by
the parameter ANN_FILE.

APFLAG AU Returns into local variables the
array processor

availability, format and size of an input
image.
APODIZE O Modifies picture borders so that the
Fourier

transform will be free from spikes through the
zero frequency axis, allowing filters to

operate
without ringing on the edge of an image.

APPEND O Concatenates up to 30 images
vertically.
ARCDR_GEN X Makes the OHFnnnnn.LBL, EPFnnnnn.LBL,

ADFnnnnn.LBL, RDFnnnnn.LBL and ACONTENT.TAB
files for the ARCDR CD-ROMs.

ARCHIVE X Creates the ancillary file of all
archival

products from the MIPL/MAGELLAN systematic
stream.

ARDREC OX Corrects aircraft line scanner imagery
for

relief displacement using digital elevation

(DEM) data.
ASTRTCHR Performs automatic linear stretches on
fullword

floating point or integer images.
AUTOMATCH A program which automatically acquires
tiepoints

from sets of images for the purpose of
producing

mosaics.
AVERAGE Averages up to 48 separate images into
one

image.
AVHRRLOG OX Logs NOAA AVHRR data from tape into VICAR

format.
BADLABELSDetermines the "Bad Data Values" for an input

GLL SSI UDR. Optionally, it will also cal-
culate the entropy of the image.

BADR_ARCH X Archives BADRs onto magnetic tape and
optical

 disk.
BADRLOG X An ALT-DAILY internal process which takes
the

BADR data records created by RCBR and forms
BADR orbital files which will be run into BIN
to make the GADR.

BADSHOW U Prints or displays the bad data values in
an

image.
BADRSIM X Generates the basic altimeter data record
files

for MIPL-MGN processing of altimetric data.
Will place ramp-generated data or user

specified
imagery into the output files.

BANRMOV OX A stream used to remove bands from F- or
C1-

MIDRs.
BARNE FX Submits film recorder requests to
the MRPS

(Multiple Recorder Production System). Will
be

replaced by BARNER in the near future. (See
the MRPS User Guide for more information.)

BICUBIC Enlarges images by integer zoom factors
using

cubic convolutional reconstruction filters.
BIDRINDX X Creates an IBIS file containing
information

from an F or C BIDR. The IBIS file can be
used to navigate around in the BIDR without
having to read the file.

BIDRLOG X Transforms a single bidr file into a
VICAR

format image file.
BIDRSIM X Creates files/tapes in the Magellan BIDR

format.
BIN X Places data into sinusoidally projected
image

files from VICAR orbital files.
BLEMFIX IU Interactive program for constructing
Voyager

blemish files.
BLEMGEN Generates Galileo Blemish Definition
Files

from the output of GALGEN. Blemish file to be
used by GALSOS.

BLEMPIC U Creates images of the permanent
blemishes, low

full-well pixels and total blemishes recorded
in the BLEMGEN blemish file. Initially in-
tended for Galileo processing.

BLEMVORB Removes blemishes, wrinkles, and warts from
raw VIKING Orbiter images by replacing recti-
linear areas with an average of nearby points.

BOXFLT2 Applies either a highpass or lowpass
filter

to a dataset.
BOXGEN OX Generates a step wedge series of discrete

blocks arranged horizontally in a big "box".
Used in legends and keys.

BRDR_ARCH X Archives BRDRs onto magnetic tape and
optical

disk.
BRDRLOG X Processes the Magellan radiometer data
from

an input file containing one orbit's worth of
data into output orbital files.

BROWSE A*DIU Interactive program allowing the user to
col-

lect display images from the Voyager Image
Catalog, based on user-supplied criteria.

BTC_COMP ? MIPS VICAR application for performing
4x4 BTC

compression on images using the algorithm
developed by Delp and Mitchell. Used on the
Mars Pathfinder MicroRover imaging system.

BTC_DECOMP ? MIPS VICAR based application for
decompressing

4x4 BTC compressed images.
BWSEND ORX Generates an ASCII file representing a
grey

scale image or pseudo color image in a com-
pressed format to be downloaded to a Rainbow
PC with a graphics board.

C U Converts images between all recognized
format

types by using simple linear transformations.
C_BIDR X Used for daily processing and archiving
of

the C-BIDR data stream.
C130RECT OX Removes panorama distortion, adjusts
aspect

ratio and corrects tilt of images from
scanners

sampling at equal angular increments.
CAMPARAM Returns into local variables information
from

a Voyager image label.
CATARCH X A program procedure which enters the
archival

tape name, and the archival file number into
the image catalog.

CATCD Updates Galileo SSI image catalog with
infor-

mation on systematic processing products that
are stored on CDROM devices. Supplements the
program CATPRODUCTS.

CATFILE OX IBIS program concatenating up to 10
interface

files.
CATFILM X Sorts through the Image Catalog and forms

a collection of records which match the input
sort parameters.

CATIMAGE DX Enters data from processed Voyager images
into

the Voyager Image Catalog.
CATLABEL Updates the VICAR label of a Galileo SSI
UDR by

retrieving the most current information from
the Galileo IMAGE Catalog and SPICE kernels.

CATLIST DX Allows user to sort through the
Voyager Image

Catalog with up to 12 user-supplied sort
criteria.

CATMRPS X Galileo procedure facilitating the
submission

of processing requests to MRPS.
CATMRPS0 X Stores data related to GLL Barne
submissions

in the PHOTO_PROD and MRPS_FILE domains of the
Processing Request Catalog.

CATNIMS U Reads the NIMS Systematic Processing
request

and creates corresponding records in the
PROCESSING, MOSAIC, and MOSEDR domains in the
NIMS Catalog.

CATNIMS2
CATPRODUCTS Allows the analyst to perform an update
of one

of the Galileo SSI, NIMS, and PWS Catalog
domains containing product information.

CATRADIO U Stores data about Galileo SSI radiometric
cali-

bration files in the SSI_RADIOMETRIC domain of
the Galileo (Datatrieve) Catalog.

CATRADIO2
CATREPORT U Provides a means to search the Galileo
SSI,

PWS, and NIMS Catalogs and produce either a
report with a pre-defined format or an adhoc
report.

CATSEARCH U Aids in the automation of systematic
processing

and for the production of EDRs and SSI REDRs.

CATSEDR X Reads a Voyager SEDR tape, and optionally
stores

the data into the image catalog.
CATSLIST DX Allows user to sort through Voyager Image

Catalog with up to 7 user-supplied sort
criteria.

CATSPICE U Reads SSI and PWS SPICE kernels and
stores the

data in the SSI Overview Domain and PWS
Predict

Domain of the Galileo Catalog.
CATSUP
CBIDRGEN X Performs a 3x3 compression on MAGELLAN F-
BIDR

SAR data, while perserving the format as
defined

in RPDS-101, revision 1.
CCDNOISE T Calculates the system gain constant and
noise

floor of the Galileo CCD Light Transfer File
generated by MOMGEN.

CCDRECIP T Calculates the sensitivity and shutter
offset

for the Galileo CCD camera system from the
output from MOMGEN.

CCDSLOPE T Calculates slope and offset from the
Galileo

CCD Light Transfer File generated by MOMGEN.
CCOMP Converts images between the complex pixel

format and two real format images (amplitude
and phase, or real and imaginery) and vice
versa.

CD_ARC X Creates tje DMAS directory file for the
CD-ROM.
CDGEN Generates PDS label files for the
following

files:
CDGEOM U Takes the output from a command that
accesses

the experimenters notebook and creates the
files

geom.tab and geom.lbl.
CELLGEN OX Creates an image composed of square,
equal-

sized regions of encoded DN values increasing
in value from left to right and top to bottom.

CFORM Converts images between any of the
recognized

data formats and performs linear transform-
ations on images.

CHKSPACE Returns the number of free block (512
bytes)

available to this user on a specific disk
drive.

CHKSPACE_UNIX
CHKSPACE_VMS
CLABEL Reads the contour information generated
by

CONTOUR, after CONTOUR's output graphics
file has been expanded by POLYSCRB. Then
generates a FONT parameter file, which may
be used to add labels to the contour file.

CLBLFONT U Writes text onto any VICAR2 byte image
with

a choice of seven available FONT styles.
CLEANLABEL Removed duplicated label items from the

history label of any VICAR image.
CLUSAN Creates a statistics file using the
simulated

annealing optimization technique to find the
best cluster partition for MSS data.

CLUSTEST Determines the statistical significance
of

clusters in a stats file.
CNT Returns into a local variable the number of

files in a SRCH list.
COLOR OX IBIS program coloring "painted"
regions with

5 or fewer colors so that adjacent regions
have different colors (DN levels).

COLORT Transforms images between color domains
(RGB,

Tristim, CIE, USC, Spherical, HSR, HSI or Cube
Root).

COMMENT O Allows a PDF file to display a comment as
it

executes.
COMMON_PROC_DONE

COMMON_SAVE_PAR
CONCOMP1 O Removes high frequency noise components
from

an image. Typically used on classified or
stratified images produced by FASTCLAS or
USTATS.

CONLAB Speeds up the contour label program
written by

Mike Girard.
CONR4FIL OX Converts IBM floating-point (REAL*4) data
files

to VAX format.
CONTENTS X Creates the contents.tab and the
contents.lbl

files which reside in the root directory of
the CD-ROM and the browse.lbl and hist.lbl
files which are in the MIDR subdirectories.

CONTOUR O IBIS program creating a Graphics-1
file of

isolines.
CONVIM X Converts images on tapes of various
formats

into VICAR format (e.g., IBM to VAX). Will
be replaced by DCONVIM.

CONVISOS OX Converts between image and object space
coordinates for all flight projects.

CONVPR OX Transforms a PICREG tiepoint file
into the

format needed by R.
CONVRP X Converts R, RG2 or TIECONM tiepoint
files into

the format used by PICREG.
COPY Copies all or part of an image to another
file.
COPYOD ? Copies all or part of an image into
another

file. Works on labeled or unlabeled files on
tape or disk.

COPYFILE OU IBIS program which copies selected
columns of

an input interface file into selected columns
of an output interface file.

CORNER IBIS program finding good tiepoint
locations

by looking for corners or features in the
image.

COUNT PU Types the number of files in a list
created by

SRCH.
CSEND ORX Allows color images to be downloaded
onto a

Rainbow PC graphics board in 16 color steps.
CTRMATCH OX IBIS program matching an image produced
by

PAINT with information contained in a
Graphics-1 file.

CUMDIR X Magellan program to create CD-ROM CUMDIR
files.
DATETIME Types the current date and time.
DC Creates "dark current" image from several
input

images.
DEALLOC X Deallocates a tape drive assigned to
the user.
DEBARC Decompresses a Galileo image output from
the

Block Adaptive Rate Compressor.
DEBARC2 Same as DEBARC, but for diagnostic
purposes

only.
DEMLOGA OX Logs USGS DEM (Digital Elevation
Model) data

into VICAR format.
DENDSTAT OU Produces a dendrogram (tree-like diagram)
for

classification statistics files produced by
STATS and USTATS.

DGN2GRAF OX Converts either 2-D or 3-D INTERGRAPH
IGDS

design files to IBIS Graphics-1 format.
DIFPIC Differences two images, outputs a
difference

images and reports statistics.
DISMOUNT X Dismounts a tape from a mounted tape
drive

 assigned to the user.
DISPARMS OU Displays the parameters in a VICAR
parameter

file.
DISPLAYS IX Allocates or deallocates a display
device.
DISPOUT IOU Produces VICAR formatted datasets
from the

video and/or graphics planes of frame buffers
supported by the MIPL Virtual Frame Buffer
Interface.

DNSYMBOL OX Converts DN values into symbols and
shading.
DPOLYCUTS OX Generates cutlines for mosaicking.
DROPOUT Finds and fixes pixels and missing lines
in

VIKING Orbiter images by interpolating over
the

missing data.
DS4 OX Removes 6-line striping from LANDSAT
imagery

by performing localized histogram matching of
the 6 sensors.

DTRTAE DX Allows user to run Datatrieve
commands from

within VICAR procedure.
DTTLOGA OX Logs NCIC 1X1 degree DEM (Digital
Elevation

Model) data into VICAR format.
DVECTOR Draws any number of vectors on a picture
of any

size.
EDIBIS O IBIS interactive program for editing
interface

files.
EDIMAGE I Allows interactive image editing and
annotating.
EDRGEN U Generates Voyager EDR tapes from
VICAR image

files.
EDRVAL DU Validates Voyager EDR tapes.
EDSTATS U Allows editing of classification
statistics

files
created by STATS and USTATS.

EIGEN P Procedure computing the principal
component

transformation matrix of up to 32 input
channels. Also contains the color decorre-
lation stretch algorithm.

EIGENVEC Computes the principal component
transformation

matrix for up to 32 input channels.
EXPEDIT U Takes the output of the program EXPER and
puts

it in a form that is readable by the program
GEOM.

EXPER U Accesses the experimenters notebook and
returns

the output of the database query it calls to a
file specified by the user.

F2 Performs general arithmetic operations on
images.

F2_3D X Similar to F2 but allows for arithmetic
operations between three dimensional input
files and can produce a three dimensional
output. Will be replaced by F2.

F2COMP OU Handles arithmetic operations on
images in

complex number format.
FARENC Determines target body center from an
image

containing a planetary limb.
FASTCLAS Classifies multispectral images using
parallel-

epiped algorithm and Bayesian Maximum Likeli-
hood method.

FASTMOS Mosaics up to 48 images based on user-
specified

input parameters.
FBIDR_DIRF X Creates DMAS directory file for archiving

Magellan FBIDR's.
FFT1 A*PU Procedure computing forward and inverse
complex

1-D Fourier transforms.
FFT11 Computes the forward or inverse complex
Fourier

Transform on a line-by-line basis. It is
analogous to the program FFT1AP except that it
does not use the array processor and is more
flexible in its input format requirements: it

will allow any data format and most FFT sizes.
FFT1AP AX Used in conjunction with FFT1PIX, FFT1AP

provides a versatile one-dimensional filtering
technique.

FFT1PIX Displays an amplitude and/or phase
picture of

the input Fourier transform. Also permits
user

to modify the Fourier transform.
FFT2 A*P Procedure computing forward and
inverse complex

2-D Fourier transforms.
FFT22 Performs direct and inverse 2-D fast
Fourier

transforms. Doesn't require the array
processor.

FFT2AP AX Same function as FFT22 but uses the
array

processor.
FFTCLAS OU Analyzes halfword FFT images and
produces 5

attribute values for each FFT examined.
FFTFIT O Modifies complex Fourier Transforms
(FT) by

either multiplying the FT by an input image or
by making the amplitude of the FT proportional
to an input image.

FFTFLIP O Rearranges the internal structure of
a Fourier

Transform such that DC is moved from the
upper-

left corner to the center of the image and
optionally performs a transposition of upper-
left to lower-right diagonal.

FFTMAG O Expands a picture's size by a factor
of 2**N

by enlarging the Fourier Transform of the
picture using the sampling method.

FFTMAGIC O Obtains the amplitude from the phase of a
Fourier Transform or vice versa.

FFTPIC Extracts data from a Fourier transform
for

image display.

FICOR77 Removes Voyager vidicon radiometric
distor-

tions.
FICOR86 X Removes summation-mode Galileo CCD
radiometric

distortions.
FICORGEN X Generates a scale correction file for use
by

Voyager radiometric programs FICOR77 and
FIXVGR.

FIL2 Computes filter weights from various functions
for input to FILTER.

FILSUM U Displays the DACS file summaries for both
MIPS

real-time streams.
FILTER A*PV* Filters images using user-specified
weights.
FILTER2 A*PV* Procedure which calculates filter weights
from

various functions and then applies weights in
the spatial domain. Calls FIL2 and FILTER.

FILTERAP X Performs two-dimensional convolution
filtering,

using the FPS array processor.
FILTEREM Performs 2-D convolution filtering. Can
be

used to perform high-pass or low-pass
filtering.

FINDSPACE U Selects, from a specified list of disks
(or

directories), the one that has the most
available disk space.

FINDTIE U Finds and records tiepoint information
for

Magellan F-BIDRs.
FIT Performs automatic linear stretches on
halfword

images, based on a histogram. May be used to
convert from halfword to byte format.

FIXLOC Lists and edits images containing
coordinate

information generated by RESLOC.
FIXVGR Multiplies Voyager halfword images by a
con-

stant to produce more radiometrically accurate
data. May be run after FICOR77.

FLOT "Flips" or rotates images by 90 degrees.
FMASK OX Replaces any pixel in an image with
the speci-

fied DN, if the corresponding pixel in the
second input "mask" file has a DN=0.

FONT Superimposes text on an image allowing the
selection of font type, size and intensity.

FOOTPRINT DIPU Interactive program displaying a
Voyager image

"footprint" on a specified map with graphical
indication of the limb, terminator, and
lighting angles. Requires the Voyager Image
Catalog.

FORM Returns into local variables data format, NL
and NS of a file.

FRACGEN O Generates images which are similar
to elevation

images of mountainous regions using the frac-
tional Brownian Motion process.

FRAME X Creates the frame.tab, frame.lbl, and 56
subframe label files that will go in a MIDR
subdirectory of a CD-ROM.

FT2 AX Computes forward and inverse complex 2-D
Fourier transforms.

FTPACK X Converts data formats from FT2
"packed" to

FFT22 "unpacked" and vice versa.
FULLSIZE OX Sizes an image down by integral factors.

Supports byte, half and fullword formats.
G3APPEND OX IBIS program taking Graphics-3 files and
ap-

pending them together to make a single
Graphics

-3 output file.
G3GEN OX IBIS program generating a Graphics-3
file from

user parameters.
G3LIST OX IBIS program producing a listing of
a Graphics

-3 file.
GADR_ARCH X Archives the terrain output from the GADR

procedure to tape and optical disk.

GAIN X Writes the Magellan rset gain report.
GALGEN Generates Galileo CCD radiometric
calibration

files and dark current files for input to
GALSOS.

GALSOS U Decalibrates Galileo CCD images with
calibra-

tion files produced by GALGEN and BLEMGEN.
GALSOSI U Generates "raw" images from
radiometrically

corrected flight images.
GAUSNOIS OU Generates a random DN (noise) image using
a

Gaussian probability distribution.
GEDREAD U Copies the EDRs on a Galileo SSI or PWS
EDR

tape to disk, producing files in the VICAR
file format.

GEDRGEN U Generates multiple copies of Galileo SSI
or PWS

EDR tapes from a sequence of input EDR disk
files.

GEDRLIST Lists the Galileo SSI, PWS, or NIMS binary and
line headers in a readable form.

GEDRVAL U Validates Galileo SSI or PWS EDR tapes.
GEN Generates an artificial image with specified

size and values.
GENTHIS Generates a small image given a list of
DN

values for each pixel in the image.
GEOM PU Procedure automatically selecting MGEOM
or

LGEOM to perform geometric transformations.
GEOMA Performs geometric transformations on
images

using quadrilaterals.
GEOMREC OU Transforms slant range measurements
to ground

distance measurements.
GEOMZ OU Performs vertical (brightness or DN)
correc-

tions on images specified by a set of points
in

a parameter dataset.

GET_SFDU X Transfers telemetry data, known as SFDUs,
from

AMMOS using TDS (Telemetry Delivery Subsystem)
and TOT (Telemetry Output Tool) Software. In
addition, this program has the capability of
reading in files containing SFDUs.

GETGEOM U Returns in restab the geoma parameters
required

to geometrically correct an image.
GETLAB Retrieves a label item from any part of
the

VICAR label and assigns it to a local
variable.

(Same as LAB2TCL - which has better help file)
GETLOC U Extracts subarea from a tiepoint
file con-

taining theodolite measurements of grid images
in order to calibrate a vidicon or CCD camera.

GETPLACON X Returns planetary constants given either
the

planet name or the planet ID# as in the
sedr/spice.

GETPWS X Unpacks a PWS EDR file into bytes and
removes

the binary headers and labels.
GETSPICE X Program returns the SEDR or SPICE
navigation

data for an image from any flight project.
GETZVAL OU IBIS program extracting brightness
values in

an image from points specified in an interface
file.

GF OX Allows the user to create FORTRAN IV-like
expressions to perform general mathematic
operations on one or more graphics-1 file
coordinates.

GIACONDA U Transforms images taken through several
filters

into a color image in which designated spectra
are accurately reproduced.

GLLBLEMCOR U Performs blemish corrections for a SSI
REDR

image. Also identifies the Low-Full-Pixels
and

stores that information in the binary header
record of the output image.

GLLCALNAME X Returns the file name of the proper
calibra-

tion file given a set of defining parameters.
GLLCAMPAR X Reads information from the label of a
Galileo

image and returns it to a TAE procedure.
GLLCOLOR Transforms Galileo images taken through
several

filters into a color image in which an attempt
is made to reproduce accurately certain
designated spectra.

GLLFILLINFills in missing lines, partial lines, or
trucated lines for Galileo SSI images.

GLLGCOR Returns the geometrically correct
location of a

pixel based on the uncorrected pixel location.
Specific to the Galileo camera system (SSI).

GLLMASK U Prepares Galileo iamges for film recorder
play-

back by surrounding the image with a mask.
GLLPFCF X Creates radiometric calibration
files for

summation-mode Galileo images.
GLLPSF X Generates a 2-D point spread function in
fft

format suitable to be converted into a 2-D
optical transfer function by vicar program
FFT22.

GLLREQUEST X Constucts a Datatrieve command file
consisting

of Processing Request information.
GMASKMGN X A set of mask routines used to produce
small

image masks for the photoproducts of the
Magellan project.

GNAV IOX Determines the camera viewing geometry of
an

image by locating one or more distinct
features

in the image.
GPWAUDIO U This program reads the GLL PWS file (UDR
or

EDR), and outputs the data, via DR11-W
(logical name = PWSDEV), a Direct Memory
Access interface, to the MIPL Audio generator.

GPWS PU Procedure performing Galileo PWS
Systematic

Processing
GPWSFORMAT U Adjusts Galileo PWS image size for the
FFT and

converts information in the input binary label
to the output history label.

GPWSMASK U Formats the Galileo PWS data for hardcopy
display.

GPWSSIM X Generates one RIM of Galileo PWS
data to simu-

late the EDR disk file. Used to generate data
for Galileo software testing.

GR2GEN OX IBIS program generating a Graphics-2
file from

user parameters.
GR2IM OX IBIS program converting parts of a
Graphics-2

file into VICAR images.
GR2POLY OX IBIS program converting user-
selected parts of

a Graphics-2 file into Graphics-1 format.
GR2REP OX IBIS program producing a listing of
a Graphics

-2 file.
GRADREM OX Removes large, systematic and non-
linear arti-

ficial brightness gradients along scan lines
of

wide-angle aircraft scanners.
GRAF2DGN OX Converts IBIS formatted data to either 2-
D or

3-D Integraph IGDS design files.
GRAFIMG OX IBIS program converting image data
into a

gridded 3-D Graphic-1 file with z-values cor-
responding to image DN values.

GRDR_ARCH X Performs batch processing of the GRDR
data

stream.

GRDR_DAILY X Initializes the GRDR which consists of 4
files.
GREDRGEN U Generates multiple copies of Galileo SSI
REDR

tapes from a sequence of input REDR disk
files.
GREDRVAL U Validates Galileo SSI tapes.
GRID Superimposes a user-defined reference grid on

a byte image.
GRIDGEN Generates a "perfect" grid for use with
anal-

ysis of Voyager and Galileo geometric grid
images.

GRIDLOCB U Locates grid intersections to sub-pixel
accuracy.

GRLIST OX IBIS program producing a line and
sample list-

ing of a 2-D or 3-D Graphics-1 file.
GRUTIL OX IBIS program appending or converting
3D and 2D

Graphics-1 files.
GXFRAME X Creates the detached framelat label files
that

go in the image subdirectories of a GxDR CD-
ROM.
HEX2INT OX IBIS program converting Graphics-1
file "hex"

edges into a graphics file with "hex cc"
coordinates.

HEXGEN OX IBIS program generating image and
attribute

files of hexagon grids from user parameters.
HICCUP Computes the histogram, mean value, and
stan-

dard deviation of an image and outputs thee
values to an IBIS-2 format histogram file.

HIST Prints DN-frequency histogram of all or por-
tions of an image along with image statistics.

HIST2D U Generates a 2-D histogram file from a
VICAR

file of three dimensions.
HISTGEN Generates a histogram dataset of an
image.
HSTRETCH OU Produces a binary mask or may be used to

modify the DN values of an image (similar to a
table stretch).

HUFFCODE OX Compresses or decompresses VICAR images
using

Huffman coding.
IBIS IBIS is an IBIS-2 program, designed to provide

basic file utilties for IBIS-2 and IBIS-1
tabular and graphics files.

IBIS2TCL OU IBIS program returning tabular file
values into

local variables for use in procedures.
IBISGCP U Collects Ground Control points to
use in

mosaicking.
IBISLSQ OU IBIS program performing least-squares fit
on

columns of a tabular file, placing them in a
column of the tabular file.

IBISNAV U Extracts information form the SPICE or
SEDR

file, augments it with camera constants and
then reformats the data as a VICAR IBIS
interface file.

IBISNBR OX IBIS program finding the nearest
neighbor point

for every point in a column of a tabular file.
IBISREGR OU IBIS program performing a series of
multiple

linear regression analyses on tabular files,
searching for a best fit.

IBISSTAT OU IBIS program performing statistical
analyses

(e.g., multiple regression, factor analysis,
correlation) on tabular files.

IBISUPDATE U Updates the SPICE/SEDR file with
navigation

information from an IBIS SEDR file.
ICTCOMP X Simulates Galileo SSI/PWS telemetry
data which

has been ICT or losslessly compressed. The
resulting compressed image may be decompressed
using ICTDECOMP.

ICTDECOMP X Decompresses a Galileo SSI or PWS image
previously compressed via an ICT or lossless

compression.
IDX IX Displays VICAR images interactively.
IFFT IOU Allows user to interactively select and
modify

areas within an FFT.
IGENER OX IBIS program creating an interface
file from

user parameters. Will be replaced by IBIS.
IGIS IOX Displays VICAR images interactively
allowing

geologist to determine: strike/dip, slope,
generate terrain files and trace contacts.

IMG2ASCII OU Creates an ASCII file of values from a
VICAR

image.
IMLIST X Prints the picture summary of a raw
Voyager

image file.
IMP IU Plots multispectral image data
interactively

on a display device.
INSECT Mosaics or merges two images of unequal
sizes

into a composite image.
INSERT Performs image copying and duplicates
lines

when a larger image size is requested. It is
useful for correcting misregistration due to
line dropouts.

INSERT3D Inserts a band (or depth) into a 3-D file.
INTCON OX IBIS program converting IBM VICAR
interface

files into VAX VICAR interface files
INTERLOC I*U Roughly locates grid intersections in
byte

data.
ISISLAB X Prints the PDS label of an ISIS cube to
the

terminal or VICAR log file.
KEPLER X Performs correvolving and Keplerian
motion

compensations on images of planetary rings
systems.

KEYMOS1 OX Mosaics up to 10 images.

LAB2TCL OU Retrieves a label item from any part
of the

VICAR label and assigns it to a local
variable.

(Has better help file than GETLAB).
LABEL Lists, creates, modifies or removes a
VICAR

label.
LABLIST Prints the project label of an image
followed

by either a simple listing of history label
program/task names or a complete listing of
all history labels.

LABSWTCH U Switches the history labels of two VICAR
images.

LABVFY OU Verifies that an image label
contains a speci-

fied string.
LAVE OU Calculates the average DN or standard
deviation

for each line or column as specified within an
image.

LEONARDO ITU Allows the interactive definition,
modification

and examination of "special colors" for the
program GIACONDA.

LGEOM Performs geometric transformations.
LINEMTCH OU IBIS program performing one-dimensional
line-

to-line correlations, placing the output in an
interface file.

LIST Lists the DN values of specified regions
within

an image.
LISTBITS Prints the bits in an image area as strings

of ones and zeroes.
LISTLOCS X Lists the seam locations in a MAGELLAN
MIDR

file.
LISTSEDR X Computes useful geometric parameters from
the

Voyager SEDR.
LISTSEDX OX Computes useful geometric parameters
contained

within the Datatrieve SEDR, and prints a
report

based upon user input sort criteria.
LOCUS U Compares sets of input coordinates
and displays

the differences.
LOGMOS X Logs and mosaics Magellan BIDR files
to create

MIDR files.
LOOKUP X Maps input DN values to red, green,
blue output

files using user-supplied pseudo color lookup
table, such as from IDX.

LOS2DEM OX Runs line of sight (LOS) between two
points on

digital elevation model (DEM) to: find
coordi-

nates and elevation of points where LOS meets
the DEM and finds the minimum, maximum and

mean
elevation along projection of LOS onto DEM.

LSTOXYZ U Converts the tiepoint locations stored in
a

Mark file and written by program TRACKER
either

to: X,Y,Z,Error coordinates in the planet
reference frame or Lat,Long,Range-radius,error
coordinates on the planet and writes them into
another Mark file.

LTGEN U Initializes the Light Transfer File
or the

Reciprocity File used by MOMGEN, to measure
the

radiometric properties of a camera system.
MANMATCH U Acquires manual tiepoints from sets of
images

for the purpose of producing mosaics.
MANUAL OX Produces a mosaic from images which are

geometrically corrected or uncorrected.
MANUAL2 OX Creates an updated VGR SEDR which can
then

be used by MAP2 to create an accurate mosaic.
MANUAL3 OU Creates an updated Galileo SEDR which can
then

be used by MAP3 to create an accurate mosaic.
MANUAL4 OU Creates an updated Galileo SEDR which can
then

be used by MAP3 to create an accurate mosaic.
MAP U Performs the calculations necessary for
LGEOM

to perform a rubber-sheet stretch on a picture
to convert it from a perspective projection,
in which latitudes and longitudes are compli-
cated functions of line and sample which
depend on the position and orientation of the
camera, to a standard cartographic projection

in
which longitude and latitude are simpler
functions of line and sample which are
independent of camera viewing geometry.

MAP2 PU Generates map projections by rubber-sheet
transformation.

MAP3 U Performs the calculations needed to
perform a

rubber-sheet stretch on a picture to convert
it

from a perspective to a standard cartographic
projections.

MAPGEN OX IBIS program taking an image divided
into poly-

gon regions, and assigning a grey value to
each

region according to information in an
interface

file, or by user-defined input parameters.
MAPGRID Superimposes a 25 x 25 pixel reference
grid on

an image.
MAPLABPROG U Adds the MAP2 task-label to an image
label.
MAPMATCH U Acquires manual tiepoints between many
input

iamges and a reference image or mosaic for the
purpose of producing mosaics.

MAPTRAN X Converts map projected images from
one pro-

jection to another.

MAPTRAN3 OX Performs a brute-force transformation
from

one map projection to another by reprojecting
every pixel.

MAPTRANS PU Transforms an image from one map-
projection to

another.
MAPTRANS2 U Computes map projection transformation

parameters.
MARK U Scribes rectangles about specified pixel

location.
MASKMGN X A set of mask routines used to produce
image

masks for the photoproducts of the Magellan
project.

MASKMOS Converts map projected images into masks
for

input to NEWMOS.
MASKV U Formats any image for film recording
by placing

an information mask around the image. Labels
and histograms optional.

MAXMIN Prints and returns into local variables
the

minimum and maximum data values in an image.
MEDIAN Performs nonlinear spatial filtering
(highpass

or lowpass) based upon the median DN of a rec-
tangular window.

MEM U Performs a non-linear restoration
(deconvolu-

tion) of a degraded image by the Maximum
Entropy Method.

MENUTREE U Shows the branching of a specified menu.
MERGE DU Creates a new Voyager image from all
versions

of a specified image and updates the EDR
header

and the Voyager Image Catalog.
MESURCAHVConverts MESUR lander or rover images from

distorted (CAHVOR) to linear (CAHV) coor-
dinates.

MESURMOS Assembles multiple MESUR PATHFINDER lander
images obtained with the same camera (either

left or right camera) into a mosaic. (This is
a more simplified model than that used by the
program MESURMOSCAHV.)

MESURMOSCAHV Assembles multiple MESUR PATHFINDER
lander

images obtained with the same camera (either
left or right camera) into a mosaic using the
CAHVOR model for the input images and the CAHV
model for the completed mosaic.

MF OU IBIS program allowing use of Fortran-like
expressions to perform general arithmetic

func-
tions on interface files.

MGEOM U Performs geometric transformations
on images.

Faster and more accurate than LGEOM for rota-
tions of up to 85 degrees.

MGNCORR X Corrects for errors in deadreckoning
between two

24-hour navigation solutions.
MGNDIRNAME X Creates Magellan directory names (as
specified

by relevent SIS's) from input parameters.
MGNFIT X Performs Magellan SAR mosaicking.
MGNSIZE X Compresses the size of a C-MIDR by a
factor of

3 in both line and sample.
MGNZPAD X Pads zeroes to the front of orbit numbers
to

correspond to the file name suffixes of
Magellan

orbital data files.
MIDR X Performs batch processing of the various
-MIDR

data streams.
MIDR_ARCH X Performs batch processing of -MIDR data
streams.

Archive MIDR frames to optical disk,
disassembles frames for copy to magnetic tape,
and generates photoproducts.

MIDR_INSERT X Used for inserting Cycle 2 F-BIDRs
into

Cycle 1 MIDRs.

MIDRPOS OX Reads in the center coordinate and type
of a

MIDR and outputs the corner coordinates.
MINFILT Selects the minimum DN within a
rectangular

convolution window for images in either BYTE
or HALF format.

MJSPFCF X Creates radiometric calibration
files for the

Voyager cameras.
MOCINDEX Processes Mars Observer Camera decompressed

image CD-ROM volume index tables to produce
a master index table to catalog the masked
MOC image files that are film recorded via
MRPS.

MOCMASK Generates masked images (VICAR image
files) to

be film recorded in the MOC systematic pro-
cessing.

MOCSUMMARY Produces the Roll Contents Summary frame
for

the Mars Observer photographic products.
MOMGEN U Extracts statistical information
from specified

areas within the input image and stores the
data in a record of the Light Transfer File or
the Reciprocity File created by LTGEN.

MORPH OX Produces intermediate images between two
input

images.
MOSPLOT U Performs functions to assist the
user in the

generation of a mosaic.
MOUNT X Mounts a tape on a tape drive.
MOUNTDISK U Mounts optical disks for users.
MSS Concatenates up to 30 images horizontally.
MSSIBIS OU IBIS program converting MSS
formatted data

into an interface (tabular) file.
MSSVIEW OU Creates an image that contains a
scatterplot

of 2 or 3 bands in the center of an MSS
formatted image

MTCLEAR OX Unloads a tape from a tape drive.

MULTOVLY OX IBIS program performing image overlay to
produce a table of DN-combination counts vs.
DN-combinations (a histogram of DN-combin-
ations) in sorted order in an IBIS interface
file format.

MZGEOM OU Performs simultaneous geometric and
bright-

ness corrections.
NAV IU Determines interactively the camera
viewing

geometry of an image by locating one or more
distinct features in the image (e.g., planet
limb).

NAV2 IU Determines interactively the camera
viewing

geometry of an image by registering it to a
reference image with a known viewing geometry.

NEARENC X Determines non-interactively the
camera view-

ing geometry of an image by registering it to
a reference image with a known viewing
geometry.

NETGEN OX Supports the primary experimental program
NETWORK. Creates as output an image file
whose purpose is to act as a "synapse matrix"
for the network.

NETWORK OX An experimental program that simulates a
neural network of forward-feed, back-
propagation, Hopfield, or other hybrid
architectures.

NEWMOS U Mosaics up to thirty images.
NF2 OX Allows general arithmetic operations to
be

performed.
NIMSCMM U Creates a NIMS Merged Mosaic (MM) "cube
file"

from one or more EDR files, in a non-
interactive (batch) mode.

NIMSFLOAT U Converts all or part of a NIMS scaled
radiance

cube to floating point, using the scaling
constants in the label.

NIMSMASK U Generates a 1250x1750 pixel mask for NIMS
multispectral data.

NIMSMERGE U Receives a set of UDR files, merges them,
and

outputs the merged data in EDR format.
NIMSMERGEX OX An extended version of NIMSMERGE.
NREP OX An experimental program that simulates a

neutral NREP of forward-feed, back-
propagation,

Hopfield, or other hybrid architectures.
NUT U New User Tutorial.
NUTPROMPT U Aids in drawing the user's screen in the
New

User Tutorial.
NXT Returns into local variables information about

the next file in a SRCH file.
OMC OU IBIS program converting camera pointing
matrices

and spacecraft vectors between Earth
coordinates

and planet coordinates.
OMCOR U IBIS program correcting the OM
matrices for a

set of image frames in a planetary mosaic.
For

VIKING Orbiter data ONLY.
OMCOR2 U Performs a global function minimization
of

tiepoint residuals by determining the OM
matrices which cause the tiepoints to disagree
between image pairs by a minimum.

OSBLEMLOC U Computes object space blemish locations
for

Voyager cameras.
OTF1 TU Performs 1-dimensional FFTs to compute
Optical

Transfer Function from degraded edges in
images,

or from a line spread function or tabular real
function.

OVERLAP U Creates a Magellan RSET Overlap Report
from

two BIDRs.
OVERLAY U Superimposes a user-defined
latitude-longitude

grid over an image space, object space or
carto-

graphically projected image.
PAINT OU IBIS program which takes an image
divided into

regions and "paints" (assigns specific DN
values

to) each region.
PAINTG3 OX IBIS program which takes a Graphics-
3 image

divided into regions and "paints" (assigns DN
values to) each region.

PCOPIN OX IBIS program generating an interface
file from

a Graphics-1 file. Replaced by IBIS.
PCOPOUT OX IBIS program generating a Graphics-1
file from

an interface file. Replaced by IBIS.
PERSLAB X Places a perspective map projection label
onto

an object space image.
PFASTMOS X Designed to carry out the mosaiking and

fragmenting functions for the Magellan P-MIDR
products.

PHOTFIT2 TU IBIS program determining the coefficients
of

various photometric functions.
PHOTFUNC U Compensates an image for variations in
apparent

brightness due to illumination, viewing
geometry

and target properties.
PHOTO X Produces a Polaroid or 35mm hardcopy
of VICAR

images on the QCR device.
PHOTOM U IBIS program producing a photometric
catalog

from which the photometric function of a
planet

can be evaluated using PHOTFIT2.
PHOTTEST U Generates synthetic photometric data to
test

PHOTFIT2.

PIC2VIC X Performs a straight transfer of an input
sub-

image to an output VICAR image.
PICMATCH AU IBIS image correlation routine for
matching

images or ground control points datasets to an
image.

PICREG I Allows interactive registration of 2
images,

generates the tiepoint and/or geom file (used
with TIECONM, GEOMA, LGEOM or MGEOM).

PICSUM Adds together multiple image files and
flags

saturated pixels for Galileo CCD calibration.
PIDR_ARCH X Procedure for archiving the Magellan

PIDR products.
PIDRLOG X Logs one pidr file at a time into a VICAR

image file in the correct oblique sinusoidal
projection.

PIXGRAD OU Calculates the magnitude and
gradient of the

brightness in an image.
PIXSTAT Generates images of statistical
quantities

derived from input image.
PLANETCNV OU IBIS program converting points in an
interface

file between line/sample in an image and
latitude/longitude on a planet surface. For
VIKING Orbiter images only.

PLOT3D OTU IBIS program plotting 3-D Graphics-1
files in

perspective view.
PLOTINT OTU IBIS program plotting columns of an
interface

file.
PLOTTING TX Selects (allocates) a plotting device for
use

with the device-independent plotting system.
PLTDGN OX Plots INTERGRAPH IGDS design files using
the

device independent Calcomp plotting system.
PLTGRAF OTX IBIS program plotting a Graphics-1
file inside

a labeled box.
PLTSYM OTX IBIS program plotting CALCOMP
special

characters on the plotting device via a 3-D
graphics file.

PMASKMGN X Produces a P-MIDR image mask for the
photoproduct of the Magellan project.

POLARECT Performs rectangular to polar coordinates
transformation (or vice versa) on an image

with
respect to an origin.

POLYCLIP OU IBIS program clipping a specified window
of

graphics elements from one Graphics-1 file,
placing the output in another Graphics-1 file.

POLYCON OX IBIS program converting Graphics-1
file to

Graphics-2 file and vice versa or copies
Graphics-2 to Graphics-2.

POLYGEN OX IBIS program creating a Graphics-1
file.
POLYGEOM OU IBIS program performing geometric

transformations to correct for distortion. It
may increase or decrease the size of a point
polygon dataset or return it to its original
state.

POLYMAP OU IBIS program converting Graphics-1
files from

one Earth-oriented map projection to another.
POLYMASK OX IBIS program cutting the portion of an
image

delineated by a set of polygons contained in a
Graphics-1 file, setting the data on the

inside
or outside of the polygons to a specified DN
level.

POLYNOIS U Produces an image containing discrete
level

noise.
POLYPMAP U IBIS program performing planet-wide map

projections on Graphics-1 files, between
latitude-longitude space and line-sample

space.

POLYPNT OX IBIS program transforming standard
polygon

files into an image file of polygon borders
each painted a unique DN level.

POLYREG OU IBIS program rigidly transforming a
polygon

dataset to correct for differences in size,
rotation, aspect or skew.

POLYSCRB OU IBIS program transforming Graphics-1
files into

an image file containing polygon borders drawn
on a uniform background.

POWER TU Computes a 1-dimensional power
spectrum of a

specified area in an image using FFT.
PPLOAD DX Reads a special database file
containing

predict PRA/PWS data into the Voyager Image
Catalog.

PRINTPIX U Produces a pseudo-gray-level image for a
printer from an input image.

PRNTIM LOX Prints images in graphics mode on a
DEC LA-50

printer using patterns having varying shades
of

gray.
PROCGEN X Generates VICAR TAE procedure for image

processing.
PSCRIPT Converts a standard VICAR image into a
text

file of POSTSCRIPT commands, downloadable to a
laserprinter.

PSF U Formats a Point Spread Function image for
FFT22

or FT2.
PTP U Projects a Voyager planetary or a
satellite

image to a different perspective.
PUTPWS X Repacks an unpacked pws file into edr
format.
PUTSPICE X Updates the SPICE or SEDR for multiple

projects.
PWAUDIO GPU Enters PWS image files into the PWS
audio

generator based on a range of FDS counts.
PWECHO GU Generates an audio tone on the PWS
audio

generator from one Voyager or Galileo PWS
file.
PWSMEK X Prints the data for a Galileo PWS Mini-E

Kernel.
PWSMERGE U Merges a maximum of 20 PWS UDR files into
a

single UDR file, which is further processed to
generate the EDR file.

QD IXO Provides a "quick" display of a 512 x 512
(or

less) image on a display monitor. There is no
interactive mode and it exits immediately upon
completion of display.

QKLK PX A procedure producing up to 12 "masked"
Voyager

images for a "quick look" playback on the
DICOMED film recorder.

QPLOT PTU A procedure plotting DN values along
a straight

line through an image as specified by the
user.
QPLOT2 U Plots the DN values along a specified
straight

line through an image. Also create spectral
plots for multi-channel data.

QREP OX IBIS program which formats and lists
tabular

interface files and Graphics-1 files.
Replaced by IBIS.

QSAR Adds specified values to the DN numbers of
rectangular sections of an image.

QUERYLAB X IBIS program inserting user-defined
columns of

names and labels into first record of
interface

file.
R AX Performs automated registration of two
images

that are similar geometrically except for
offset.

R90 OX Rotates a large picture 90 degrees
clockwise.
RADAGEN OU Transforms a terrain image, in which
DN values

represent altitude, into a synthetic radar
image.

RADIANCE OX Given a Voyager input image, locates the
target

body and calculates the mean DN value.
RAPIDMOS U Mosaics up to 40 byte images into one
image.

Similar to FASTMOS but with reduced
functionality.

RASTOGRAF OU Converts from a line image in raster
format to

an IBIS Graphics I file consisting of line
segment information.

RASTOVEC OX IBIS procedure transforming image
polygons into

vector representation of the polygon
boundaries.

RATIO PU Procedure ratioing two images (e.g.,
ratio, log

ratio, difference or log difference).
RATIO0 U Operates as part of the procedure RATIO
and

should not be run outside of its procedure.
RCBR X Processes up to 7 orbits of Magellan
altimeter

data and generates, for each orbit, a BADR
altimeter data file.

RDM X A procedure PDF that calls the Magellan
program

RDM.
RDMINIT X Sets up symbols and logical names for use
by the

Magellan program RDM.
REPAIR OU Locates bad lines and repairs them
using

interpolation.
REPORT OU IBIS program generating tabular
listings of

information within interface files.

REQUEST X Allows the user to send a request or
a message

to the system operator.
RES77 X Stores or retrieves Voyager reseau
coordinate

information from the Voyager Master Reseau
Location File.

RESET Resets the next file pointer in the list
of

files output from the program SRCH.
RESLGEN X Generates a Voyager Master Reseau
Location

File.
RESLOC U Locates reseau marks on Voyager

images.(optionally creates a geometrc
transformation file)

RESLOCVO Locates reseau marks on VIKING Orbiter images.
RESSAR75 U Removes reseaux, fiducial marks and
blemishes

from VIKING Orbiter images.
RESSAR77 U Removes reseaux, fiducial marks and
blemishes

from Voyager images.
RESTORW PU Procedure restoring an image using
the Wiener

noise additive model and and input Point
Spread

Function image.
RG TX Converts tiepoints generated by R into
GEOMA

parameters and produces a plot of the tiepoint
shift in the output tiepoint transformation.

RGB X Merges three input files into one RGB
file for

use with the MDA film recorder.
RGB2PSEUDO OU Takes a 24-bit RGB triplet and converts
it to 8

bit pseudo-color.
RING U Projects a planet's ring plane onto a

radius-azimuth grid for Voyager images (e.g.,
to straighten the rings).

RINGORBS U Creates an Orbital Elements File
containing

data for each of the known planetary ring

systems.
RIV2HEX OX IBIS program generating a Graphics-1
file

containing hexagon edges used to represent
rivers from the original Graphics-1 dataset.

ROADHEX OX IBIS program generating an interface
file of a

list of hexagon edges, used to represent
roads,

from a Graphics-1 dataset.
ROLL X Will right-shift each line of the input
to a

new position in the same line in the output,
according to 'scale' and 'offset' parameters.

ROTATE P Procedure rotating an image about a
specified

point by some angle.
ROTATE2 Computes the geometric transformation
parameters

for rotating a picture by any amount about a
specified point. Usually called from ROTATE.

ROWOP OU IBIS program to delete or select
rows from an

interface file.
RUNCODE OX IBIS program compressing or
decompressing VICAR

images using run-length encoding.
SARGON I Performs arithmatic operations
interactively on

user-defined areas (polygons) within an image
SARGONB Performs arithmatic operations on user-
defined

areas (polygons) within an image
SBOXFLT OPU Performs 2-D highpass box filter
with filter

weights equal to 1.
SCTOMARK U Reformats output files from STARCAT for
input

to MARK.
SDSIBIS OX IBIS program converting statistical
datasets

generated by classification programs into
interface file format and vice versa.

SEDRGEN OX Creates or updates a Voyager SEDR record.

SFASTMOS X Carries out the mosaicking and
fragmenting

functions for the Magellan mission.
SHADY Superimposes user-defined contour lines
and/or

shading on an image.
SHADY2 Shades an image as if image was
illuminated by a

source at a given azimuth and elevation.
SHIST OPX Produces a simple histogram on a
terminal

screen.
SHOWDISP X Prints information about display devices.
SHUTOFF X Converts Galileo shutter-offset
parameter

datasets to new image format.
SIMPLIFY OX Removes high frequency noise components
from

digital images especially from classified or
stratified data.

SINPROJ U Reprojects a vicar image file of a
sinusoidal

projection of a given projection longitude
into

an image file with a different projection
longitude; can also produce an output file

with
the same projection longitude but different
size.

SIPHON X Transfers F-BIDR data from the
Multimission

SAR Processing Lab (MSPL) to the Multimission
Image Processing Lab (MIPL).

SIZE U Expands or reduces the size of an image,
or

changes the aspect ratio of an image.
SLABEL OPX Lists the VICAR label of an image.
SLIST OPU Lists the DN values of pixels within
a 10x10

section of an image.
SORT OX IBIS program performing multiple column
sort on

an interface file in ascending or descending
order.

SOS U Removes camera shading from VIKING
Orbiter

images.
SPAM I SPectral Analysis Manager performing a
wide

variety of spectral analysis functions
interactively.

SPECPLOT U Calculates the mean and standard
deviation of a

user-specified pixel region of each band of a
multispectral or bultiband VICAR file.

SPICE U Lists all the information available on
any

image from any flight project.
SPICEBDF Creates a binary dump file from a P_constants

kernel, SCLK kernel, and leapseconds kernel.
SPICESERVER Retrieves the NAIF spice information
returned

by subroutine GETSPICE from a remote site
rather than from the local site; also stores
the NAIF spice information stored by

subroutine
PUTSPICE at a remote site rather than at a
local site.

SPLITCAL X Converts Galileo SSI slope-offset
radiometry

file into 2 files containing: slope terms and
the dark current values.

SPOT Generates byte images containing spots of
various profiles and sizes.

SRCH DX Performs an arbitrary search of the MIPL
Voyager Image Catalog and generates an output
list based on requested search criteria.

SRCHGEN DX Allows user to submit Datatrieve
commands and

construct customized output files from query
of

a Datatrieve domain.
SSIMEK X Prints the data for a Galileo SSI Mini-E

Kernel.
SSIMERGE U Merges the data from several versions of
a

Galileo SSI image.
SSTRETCH OPX Performs simple linear stretch between

user-specified limits.
STARCAT U Locates and integrates features
above specified

DN threshold values into a catalog entry.
STARCAT2 U Locates and integrates features
consisting of

contiguous pixels above a given threshold in
an

image and places the results into a catalog.
STARLAB U Places identifier labels beneath each
object

located by the program STARCAT.
STATPLT COPU Procedure generating a plot of the

classification statistics file containing the
Centroids and Bayesian confidence regions for
each class.

STATS U Computes statistics of training
areas for

classifications using multispectral data.
STEREO OX Produces stereoscopic image pairs
from an image

corresponding to the "right eye" image and a
"depth" image for each point in order to
produce a "left eye" image.

STEREOPIC OX Displays a stereo image on the Tektronix
display terminal.

STERGEN IX Generates a correlation tiepoint
file from a

stereo pair of images, based on interactive
user input.

STERMAP X Displays the tiepoint information
produced by

STERGEN as either a map of detrended vectors,
an elevation map, map of quality or a listing
of tiepoint data.

STOREKDB X Creates an entry for a kernel in Kernel
Database.

STRATIG OX Intergraph software/hardware dependent
program

called by Intergraph User Command XSECT.
STRETCH Performs 7 types of contrast enhancements
on an

image (adaptive law, complement, contrast,
cuberoot, linear, power law and table).

STRETVAR Performs a linear contrast enhancement such
that

the high and low stretch limits vary as a
function of line number.

STRPMTCH OX Extracts an area from a raw image,
producing a

compressed image of that area.
SURVEYOR IOX An interactive, pull-down menu based
program

used to create terrain flyby animations.
SWAPPER OX Converts IBM halfword data to VAX
halfword

format.
SYNTAX X Enables syntax-checking of programs
run under

VICAR. Equivalent to FLAG-SET SYNTAX.
SYSNIMS X Performs systematic processing of NIMS
data.
TAPES X Copies or scans tape files. Program
runs under

VMS. See DCL HELP Tapes.
TAPESIPHON X Imitates the program SIPHON when
transferring

F-BIDRs from SDPS (or other sources) by tape.
TEXTAD X Superimposes rectangles and/or text
on an image
TFILT A*P Performs convolution filtering (divide,
high-

pass, lowpass, or scene dependent filter) by
averaging pixels in the neighborhood above a
threshold value.

TFILTAP AX An Array processor version of program
TFILT0.
TFILT0 Performs various boxfilter type
convolutional

filters.
THERMMOS OPX Mosaics 4 quadrants of an EROS Data
Center TIPS

processed LANDSAT 4 or 5 Thematic Mapper image
(thermal bands only).

TIECONM OU Prepares a gridded dataset for
POLYGEOM, GEOMA,

LGEOM, MGEOM or GEOMZ transformations using
paired sets of tiepoints, applying the finite

element method (triangulation) for surface
fitting.

TIEPARM OX IBIS program converting tiepoints
from an

interface file to a parameter file (for
TIECONM) and vice versa.

TIEPLOT OTU IBIS program plotting tiepoints in
an interface

file by drawing vectors indicating direction
and amount of shift between old and new

pixels.
TIESIM OX Creates an artificial Magellan tiepoint
file,

as would be produced by the program MGNFIT.
TIPSMOS OPX Mosaics 4 quadrants of an EROS Data
Center TIPS

processed LANDSAT 4 or 5 Thematic Mapper
image.

(bands 1, 2, 3, 4, 5 and 7).
TOIBIS OU Converts a file with an arbitrary line
count,

sample count, and format into an IBIS graphics
or interface file.

TOPOTRANS OPU Procedure registering a radar image to a
digital elevation image.

TOTOPO U Converts the tiepoint locations stored in
a

Mark file and written by program TRACKER and
XYZ coordinates created by program LSTOXYZ
to one of: 1) a topomap, 2) an orthonormal
view of the left image, 3) an orthonormal view
of the right images, or 4) an error map.

TOXYZ OX Converts VICAR digital elevation
files to

Intergraph digital terrain modeling XYZ files.
TPTCOORD X Converts a MARK tiepoint file from line,
sample

format to latitude, longitude format.
TPTEDT X Permits editing of a tiepoint file in
MARK

format.
TPTEDT2 Batch editor for automated removal of
erroneous

vectors (tiepoints) from a mark file produced
by

TRACKER or TRACKER2. The equivalent
interactive

program is TPTEDT.
TRACKER U Locates tiepoints on a grid between two
images

and writes the tiepoint locations into a mark
file.

TRACKER2 X Locates tiepoints on a grid between two
images

and writes the tiepoint locations into a mark
file; follows features already marked in a

mark
file through a sequence of images, creating a
new mark file for each pair in the chain.

TRACKER3 Acquires points on a regular grid; reads tie-
point locations from an input tiepoint file

and
correlates these locations only. Chaining of
tiepoints is permitted.

TRAN Converts an image from one organization to
another. Possible organizations are BSQ, BIL,
BIP, and MSS.

TRANSCOL OU IBIS program converting long columns of
data

into smaller columns based on user-specified
parameters or vice versa.

TRANSLOG P Returns into a local variable the
translation of

an input logical name defined under VMS or
VICAR.

TRICOEF Used to compute and store for later
retrieval

the conformal and authalic coefficients
permit-

ting computation of conformal (angle
preserving)

and authalic (equal area) projections of
triaxial ellipsoids.

TRISTIM Computes tristimulus values and
chromaticity

coordinates for a spectrum in order to perform
color reconstruction.

TRUCOLOR X Transforms images taken through several
filters

into a color image in which an attempt is made
to reproduce accurately certain designated
spectra ("special colors").

UPPERCASE X Converts a string to uppercase and
returns

it to a tcl variable UPR_CASE>
USERNAME PU Returns into a local variable the current

userid.
USTATS U Performs unsupervised clustering on

multispectral data.
UVECTOR X Generates a graphical display of
vectors used

for atmospheric motion analysis on Voyager
images. Uses output from UVF. Replaced by
UVMAP.

UVF DX Generates a uniform vector field of cloud
velocities from randomly spaced input points.
Uses output from AMOS. Replaced by UVMAP.

UVFMAP TX Maps a set of graphical contours,
defining

regions of meteorological significance over a
Voyager image. Uses output from UVF or
UVFSTATS. Replaced by UVMAP.

UVFSTATS X Extracts information from the output of
UVF and

generates a scalar dataset of selected
quantities. Replaced by UVMAP.

UVMAP U Generates images containin information
pertinent

to atmospheric analysis.
V2BIDR OX Places Soviet Venera formatted files into

Magellan F-SBIDR format.
V2VERSION OPX Types the current VICAR/TAE version
number.
VCOPOUT OX IBIS program transforms an IBIS
interface file

into a user-specified output file for transfer
to other data centers.

VCOPY OPX Lists the VICAR labels of all files
on a tape.
VDEMLOG OX Logs in NCIC data from a DEM
(Digital Elevation

Model) formatted tape into VICAR formatted
files.

VEDR D*U Reads a Voyager EDR tape and copies the
selected images onto disk in VAX VICAR format.
Optionally needs image catalog.

VERTSLOG OX Logs ERTS data in the format used by
LANDSAT's

1 through 3, correcting geometric distortions
found in ERTS data.

VFITS2 OX Converts FITS formatted astronomical
data into

VICAR image files. Replaced by FITSIN,
FITSOUT.
VGEDR X Reads the Galileo data tape created
by VGSDR

and converts it to VICAR format on magnetic
tape.

VGLLOG X Logs Galileo halfword calibration
images into

VICAR byte images.
VGOES OX Converts GOES (Geostationary
Operational

Environmental Satellite) imagery from the
University of Wisconsin Save-tape format to
VICAR format.

VGRBLEM X Generates an IBIS Graphics-1 file
containing

locations of the Voyager camera blemishes.
VGRFILLIN U Fills partial or entire missing lines in
raw

Voyager image files using line interpolation
methods.

VGRIBIS X Extracts information from a Voyager SEDR
file,

augments it with camera constants and then
reformats the data as a VICAR IBIS interface
file.

VGRLOG X Logs or scans Voyager EDR files and
converts

them to VICAR format.
VGRMASK DX Formats processed Voyager images
into the

Voyager Systematic format with an information
mask for film recorder display.

VGRPWS X Decompresses 4-bit Voyager PWS data
to 8-bit

data using a lookup table.
VGSDR X Converts Galileo System Data Records
into VICAR

format. Output can be read by VGEDR.
VIDS I Displays VICAR images interactively.
VIEW X Can be used to examine any area of
interest in

any of the following Magellan products: MIDRs
GADRs, GRDRs, BIDRs, PIDRs, BADRs, and BRDRs.

VISIS U Provides transformations from NIMS
systematic

VICAR files to a NIMS ISIS Cube file and from
a NIMS ISIS Cube file to VICAR files.

VLOOKUP Generates output images from input images
using data number mappings defined in a
multi-channel lookup table. The user can
specify the table by giving its location (if
it is contained in a file) or by naming a
standard pseudocolor transformation.

VMAC OX Transfers data between PICT or TIFF
format

images and IMG files.
VMDPIN OX IBIS program converting Goddard MDP
ground

control point file into Graphics-2 format.
VOLOG U Logs or scans VIKING Orbiter EDR
files and

converts them to VICAR format.
VOLSTSDR U Lists VIKING Orbiter SEDR data for a
specified

FSC time.
VOSDRIBIS IOX IBIS program extracting certain items of

information from each VIKING Orbiter record in
the SEDR image catalog, placing them in a
tabular file.

VQUIC OU IBIS program converting VAX ASCII
Edit file

into an interface file.
VSAR X Converts tape or disk images from the
labeled

to the unlabeled format or vice versa.

VTIFF Converts between VICAR labeled images and
TIFF

format files, using either scanline (strip)
organization, or the newer Revision 6.0 TIFF
tiled-image format. Currently grayscale,
image-lookup table pairs and RGB triplets are
supported. In addition, multiple auxilliary
images may be placed in the same file, such as
"thumbnail" preview images.

VWRIS OX IBIS program converting US Forest
Service WRIS

(Wild Land Resource Information System -
RID*POLY) polygon map files in Universal Data
Exchange Format into IBIS vector and centroid
graphics files.

WIENER AU Restores a Fourier transform image
using the

Wiener Noise additive model.
WILDCARD U Returns all filenames found using a
wildcard

file specification into a multivalued local
variable.

WILMA FX VMS program allowing tracking and
modification

of film recorder requests.
WORMDIR X Creates the directory specification for

WORM archival.
WRISOUT OX IBIS program converting IBIS vector
and

annotation data into U.S. Forest Service
WRIS/RID*poly files.

XFORM A*PU Performs a matrix-defined linear
transformation.

XFORMAP X Performs a linear transformation using an
array processor.

XFORMEM U Performs a linear transformation on the
input

data.
XLOCUS OU Applies LOCUS rotation and offset

transformation matrix to the Galileo
Theodolite

data.
XSECT NOX An Intergraph user command menu
producing

stratigraphic and subsurface profiles using 3-
D

elevation design files with strike/dip and
contact information on Intergraph hardware.

XVICDISP This is the first version of a display program
based around the Imaging Widget. It is a

simple
first cut, and will change as development
progresses on the GUI.

XVPLIST OX Lists the tiepoints in a dataset
written by the

XVP routines in programs such as RG2, TIECONM
or TIEPARM.

XYZPIC OX IBIS program taking a Graphics-1
file and

creating a 0 DN image, except for pixels
listed

in the Graphics-1 file.
ZCIRCLE OU Removes or replaces data from inside
or outside

a circle or elliptical pattern in an image.
ZFILL Fills voids within an image using the
mean of

all non-void DN pixels within the specified
window.

ZINTERP OU IBIS program interpolating elevation
values (z

values) from random control points into a
rectangular gridded image.

ZIPCOL OU IBIS program merging data into
specified

columns of an existing interface file from
another interface file.

Index
(The numbers listed after each entry are sections, not page
numbers.)

? 6.5.3, 7.1.1.4
Abbreviation
Hazard 7.1.1.1
Intrinsic Commands 7.1.1.1
Parameters 7.1.1.1, 7.2.2
Rules 1.3.1, 7.1.1.1, 7.2.1.3
Aborting 5.2.2, 5.5, 7.1.1.5, 7.1.5
Aborting a VICAR Command 5.5
Acronyms 1.3.2
AMOS
AMOS User's Guide 2
Application Library 3.1, 5.1, 7.3.6
Arithmetic Operations 7.1.3
Arrow Keys 7.1.1.6
Asynchronous Mode
Hazard 5.2.2, 7.5
Invoking 5.2.2
Process Name 5.3
Processing 5.2.2, 7.2.5
Tape Operations 5.2.2, 7.5
Batch Mode
DCL SUBMIT 5.2.3
fs 5.2.3
Hazard 5.2.3
Invoking 5.2.3
Job File 5.2.3
Process Name 5.3
Queues 5.2.3
RUNTYPE 5.2.3

SYS$BATCH 5.2.3
BEWARE
Defined 1.3.1
Binary Header 9.1
Binary Label
Header 9.1, 9.2
Prefix 9.1, 9.2
BROWSE
Documentation 2
Command line
Command 7.2.1.1
Command Qualifier 7.2.1.3, 10.5
Comments 7.2.1.5
Comments Hazard 7.2.1.5
Parameter List 7.2.1.4
Proc-Name 7.2.1.1
Subcommand 7.2.1.2
Syntax 7.2.1
Command line Editor
Keys 7.1.1.6, 10.10
Command line Recall 7.1.1.6
Command Line Rules 7.1.1
Abbreviations 7.1.1.1, 7.2.1.3
Editor 7.1.1.6
Keys 7.1.1.5
Line Continuation 7.1.1.2, 7.2.1, 7.2.1.5
Special Characters 7.1.1.4
Command Mode 7.1.1.5, 7.7
Command Qualifiers 7.2.1, 7.2.1.3, 7.2.3
Command/Parameter Qualifier Character 7.1.1.4, 7.2.1.3, 7.2.3.4
Comments 7.2.1.5
Comment Character 7.1.1.4, 7.2.1.5
CONTROL-A 7.1.1.6
CONTROL-C 5.5, 7.1.1.5, 7.1.5
CONTROL-D 5.2.1.2

CONTROL-O 7.1.1.5
Control-Y 7.1.1.5, 7.5
Hazard 5.5
Control-Z 5.2.1.1
Data Format 4.3.3, 9.2
Datasets 4.3
Input/Output Formats 8.3.1, 8.3.2, 8.3.3
Naming 4.3.1
Pixel Data Format - see "Data Format"
Structure 4.3.2, 9.1
Temporary 4.3.1.1
Datatrieve
Documentation 2
Related VICAR Procs 8.1
DCL Mode 5.2.1.1
As a VMS subprocess 5.3
Command Line Editor 7.1.1.6
Line Continuation 7.1.1.2
Tape Handling 7.5
Dereferencing 7.2.2
Dereferencing Character 7.1.1.4, 7.1.2.5
Device Allocation 7.5
Documentation
General VICAR Documentation 2
VICAR User's Guide - see "VICAR User's Guide"
End-of-dataset Label 9.1, 9.2
Error Handling 7.1.5
Explanation of Error Messages 10.13
$SFI_ONFAIL 7.1.2.4, 7.1.5
ESCAPE Key 7.1.1.5
EXPERT
Defined 1.3.1
Expressions
Logical 7.1.3
Numeric 7.1.3

Relational 7.1.3
String 7.1.3
File Type
Compiled PDFs 5.1, 7.3.6
Default
Global PDFs 7.3.5
Help File 7.3.4
Image - see "Datasets"
Job File 5.2.3
Log File 5.2.3, 7.6
Menu Definition File 6.3.3
Proc Definition File 7.2.1.1, 7.2.3.3, 7.3
Procedure Definition File 7.3.1
Process Definition File 7.3.2
Script Files 7.4
Temporary 4.3.1.1
TSL Files 7.6
For / End-for Statements 10.4
Formats
Foreign 7.5, 8.3.2
Input/Output 7.5, 8.3.2
Non-VICAR (foreign) 7.5, 8.3.2
Pixel data 9.1
VICAR 8.3.1
Functions
$COUNT 7.1.4
$FIX 7.1.4
$FLOAT 7.1.4
$GLOBAL 7.1.4
$STRLEN 7.1.4
Functions, Built-in 7.1, 7.1.4
Garfield 7.1.2.2, 7.1.3
Getting Started 4.2
GLOBAL 5.2.2
Global Procedures 7.1.2.2, 7.3.5

Global Variables
Changing value 7.1.2.3
DEFGBL 7.1.2.2, 7.3.6
Definition 7.1.2.2
Deleting 7.1.2.2
Help information 6.1.1
PARM 7.1.2.2
REFGBL 7.1.2.2, 7.1.2.4, 7.3.1, 7.3.2
VICAR Implicit 7.1.2.4, 7.1.5
Goto 10.4
Hardware, Facility-Specific 8
Hardware, Machine-Specific 8, 8.2
HELP
Commands 6.1.1
General 6.1, 6.3.3, 7.5
Global Variables 6.1.1
Hardcopy 6.1.1, 7.3.3
Messages 6.5.2, 6.5.3
Proc Parameters 6.1.1, 7.2.4
Procs 6.1.1, 7.3.4
Help Files 7.3.2, 7.3.4
IBIS
Documentation 2
If / Else / Else-if / End-if Statements 10.4
Image Files - see "Datasets"
Implicit Variables - see "Intrinsic Variables" 7.1.2.4
ONFAIL 7.1.2.4, 7.1.5
PROC 7.1.2.4
STDOUT 7.1.2.4
SUBCMD 7.1.2.4
Input/output Formats 8.3
ANSI-labelled 7.5, 8.3
Non-VICAR 8.3.2
VICAR 8.3.1
Interactive Session, Example 7.7

Interactive/Synchronous Mode 5.2.1, 5.3, 7.3.3, 7.4, 7.7
Interrupt Mode 5.5
ABORT 5.5, 7.1.1.5
CONTINUE 5.5
Other Options 5.5
Intrinsic Commands 5.5, 7.2.1.1
Intrinsic Variables 7.1.2.4
List of Intrinsic Global Variables 10.6
_ONFAIL 7.1.2.4, 7.1.5
_PROC 7.1.2.4
_STDOUT 7.1.2.4
_SUBCMD 7.1.2.4
Keyword Character 7.1.1.1, 7.1.1.4, 7.2.2, 7.2.3, 7.2.3.2
Labels 9.1, 9.2
Command Line 7.1.1.3
LABEL-REMOVE 8.3.1
Tapes 7.5
Library Search Hierarchy 5.1
Altering 5.1
LIBLST 5.1
SETLIB 5.1
Line Continuation 7.1.1.2
Command 7.1.1.2
Command line 7.1.1.2
DCL Mode 7.1.1.2
Hazard 7.2.1.5
Line Continuation Character 7.1.1.2, 7.1.1.4, 7.2.1, 7.2.1.5, 7.2.2
Local Variables 7.1.2.1, 7.3.5
Deleting 7.1.2.2
VICAR Implicit 7.1.2.4
Log File 5.2.2, 5.2.3, 7.6
.LOG File 5.2.3, 7.6
Asynchronous 5.2.2
Batch 5.2.3
ENABLE-LOG 7.6

Session 5.4.2, 7, 7.1.1.5, 7.7
Logging Programs 8.3.3
Logical Names 5.3
Logoff Procedures 5.4, 5.4.2
Logon Procedures 5.4.1
Loop / Next / Break / End-loop Statements 10.4
MDF 6.3.3
Menu Creation 6.3.3
Menu Mode 6.3
Entering 6.3.1
Example Screen 6.3.1
General 6.3
Prompt 6.3.1
Reentering 6.3.1
User Operations 10.7
MENUTREE 6.3.2
Messages 6.5.1
"?" 6.5.1, 6.5.2, 7.1.1.4
Explanations 6.5.1, 6.5.2, 10.13
Help 6.5.1, 6.5.2
Missing or Invalid Parameter 7.2.4
Other Resources 6.5.1
MIPS
Documentation 2
MRPS
Documentation 2
New User's Tutorial 10.14
Non-Standard Items 8
Non-VICAR Input Data 7.5, 8.3.3
Numeric Expressions 7.1.3
NUT - see "New User's Tutorial"
Parameter List 7.2.1.3, 7.2.1.4, 7.2.3.3
Parameter Qualifiers 6.2.2, 6.2.3, 7.2.2, 7.2.3.4 7.3.6
Parameter Separator 7.1.1.4
Parameter Separators 7.2.3

Parameters
Abbreviating 7.1.1.1, 7.2.2
Dynamic 5.2.2, 6.2.1, 7.2.5
Keyword Format 7.2.3.2
Multi-valued 6.2.2, 7.1.2.3, 7.2.3
Name-value Format 7.2.3.1
Order Convention 7.2.3.3
Positional Format 7.2.3.2, 7.2.3.3
Positional Format Hazard 7.2.3.3
Types 7.1.2.1, 7.2.2, 7.2.3, 7.2.3.2, 7.3.5
Value Restoring 6.2.2, 7.2.3
Value Saving 5.2.3, 6.2.2, 7.2.3
Value Specification 5.2.3, 7.2.2, 7.2.3, 7.2.3.1, 7.2.3.2, 7.2.3.3,
7.2.4
Pixel Data 9.1, 9.2
Format 9.1, 9.2
Multi-dimensional 9.1, 9.2
Proc 4, 4.5, 5.2.1, 5.2.3, 6.2.1, 7.3, 7.3.6
Definition 4.5, 7.3
Interrupt Mode 5.5, 7.1.1.5
Invocation 4.5, 5.2.3, 5.5, 6.2.2, 6.2.3, 6.3.1, 7.1, 7.1.3, 7.2.1.1,
7.2.1.3, 7.2.3.4, 7.2.4, 7.3.3
Standard VICAR 7.5
Proc Definition File 5.4.1, 7.2.1.1, 7.2.2, 7.2.3.3, 7.3
Compiled (.CPD) 7.3.6
Examples 7.3.2, 10.11
Execution 6.4, 7.2.5, 7.3.3
Global 7.3.5
Help Files 7.3.4
Parts 7.3
Procedure 7.3.1
Process 7.3, 7.3.2
ULOGOFF 5.4.2
ULOGON 5.4.1
Procedure Definition File - see "PDF"

Procedures 3.1, 4.5, 5.4, 5.4.2, 6.4, 7.1.1.3, 7.1.1.5, 7.1.2.2, 7.1.2.5,
7.2.5, 7.3
Definition 4.5, 7.3
Examples 7.3.1
Global 7.3.5
Help Files 7.3.4
Line Labels 7.1.1.3, 7.1.5
Logoff 5.4.2
Logon 5.4.1
Process 7.2.1.1, 7.3, 7.3.2
Definition 7.3, 7.3.2
Names 5.2.2, 5.2.3, 6.1.1, 7.3.3, 7.3.4
Parent 7.2.1.1
VMS 5.3, 7.5
Process Definition File - see "PDF"
Processing Modes 5, 5.2
Asynchronous 5.2.2
Batch 5.2.3
Interactive 5.2.1
Synchronous 5.2.1
VICAR DCL 5.2.1.1
Program Interface 3.1
Prompt 5.4.1, 6.2.1, 7.1.1.5, 7.2.5
DCL Mode 4.1, 5.2.1.1
Interrupt 5.5, 7.1.1.5
MENU Mode 6.3.1
USH Mode 5.2.1.2
VICAR 4.1, 6.2.3, 7.1.1.2
Proprietary Hardware 8.2
Proprietary Software 8, 8.1
Qualifiers
Command 7.2.1, 7.2.1.3, 7.2.3
Parameter 5.2.3, 6.2.2, 6.2.3, 7.2.2, 7.2.3.4, 7.3.6
Restricted Characters 7.2.2
Run-time Library 3.1, 6.5.1, 7.2.5, 8.3.2, 9.1

Reference Manual 2
Script Files
ENABLE-SCRIPT 7.4
Example 7.4
Invocation 7.4
Specification 7.4
Session
.LOG File 7.6
Customizing 5.4, 5.4.1, 5.4.2
Example 7.7
Invocation 4.1
Log 5.4.2, 7, 7.1.1.5, 7.6, 7.7
Logging 1.2
SLOGOFF 5.4.2
SLOGON 5.4.1
Software
Acquisition 3.3
Proprietary 8, 8.1
SPAM
Documentation 2
Special Characters
Command Line 7.1.1.4
Special Terminal Keys 7.1.1.5, 7.1.1.6
Subcommands 4.2, 6.2.1, 7.1.2.4, 7.1.5, 7.2.1, 7.2.1.2, 7.3.2
HELP 6.1.1
Subprocesses 5, 5.2.2, 5.3
Intrinsic Commands 7.2.1.1
SHOW SYSTEM 5.3
VMS 5.3
Substitution Character 7.1.1.4, 7.1.2.1, 7.1.2.2, 7.1.2.4, 7.1.2.5,
7.2.5
Sybase
Documentation 2
Synchronous Mode 5.2.1, 5.3, 5.5, 7.2.5, 7.4, 7.7
Syntax Checking 6, 6.4, 7.3.3

Disabling 6.4
Enabling 6.4
Hazard 6.4
TAE 1.3.2, 3.1
Command Language (TCL) 3.1, 6.2.1, 7.1
Documentation 2
Tape File Specification Character 7.5
Tapes 7, 7.5
Access in DCL Mode 7.5
ANSI-labelled 7.5, 8.3
Asynchronous 5.2.2
Device Allocation 7.5
File Specification 7.5
Foreign 8.3.3
Hazard 5.2.2, 7.5
Labels 8.3
Processing 7.5
Processing Example 7.3.1, 7.5
Symbolic Names 7.5
TAPES Utility 7.5
TCL - (See TAE - Command Language)
Termination 5.5, 7.1.1.5
Hazard 5.5
Terminology 1.3.1, 1.3.2
Transportation
Data 8, 8.3
Software 3.3
Tutor Mode 6.2, 7.1.1.5, 7.2.4
Command Line Parameters 6.2.1, 7.1.1.1, 7.2, 7.2.2, 7.2.3.1,
7.2.3.3, 7.2.4
Defined 6.2.1
Entering, Command Line 6.2.1
Entering, Interactive Proc 6.2.1, 7.1.1.5
Line Editing 6.2.2
Line Editing Keys 10.9

NOSCREEN Mode 6.2.3
SCREEN Mode 6.2.2
User Operations 10.8
ULOGOFF 5.4.2
ULOGON 5.1, 5.4.1
UNIX
Differences from VMS-VICAR 3.1.1
USH Mode 5.2.1.2
User Aids 6, 6.5.3
User Interface 3.1
USH Mode 5.2.1.2
Command Line Editor 7.1.1.6
Line Continuation 7.1.1.2
Variables 6.4, 7.1.2, 7.1.5, 7.3.4
Assignment 7.1, 7.1.2.3, 7.1.3
Deleting 7.1.2.2
Dereferencing 7.1.1.4, 7.1.2.5, 7.2.2
Display 3.1, 5.1, 6.2.3, 7.1.2, 7.1.2.2, 7.2.3.3, 8.2
Examine 5.4.1, 5.4.2, 7.1.2
Global 6.1.1, 6.2.1, 6.3.2, 7.1.2.2, 7.1.4, 7.3, 7.3.5, 7.3.6, 10.6
Implicit - see "Intrinsic Variables"
Intrinsic - see "Intrinsic Variables"
Local 7.1.2.1, 7.1.4, 7.1.5, 7.2.5, 7.3.1, 7.3.2, 7.3.5
Referencing 7.5
Substition 7.1, 7.1.1.4, 7.1.2, 7.1.2.5
VICAR 3.1
Acquisition 3.3
Applications 3.2
Changes under UNIX 3.1.1
Changing VICAR prompt 5.4.1
Command Qualifiers 10.5
DCL mode - see "DCL Mode"
Documentation 2
Entering 4.1
Executive 3.1, 5.1, 5.3, 6.1, 7

Exiting 4.1
Facilities Using VICAR 3.2
Format 8.3.1
Functional Classification of Procs 10.2
Functional Definitions of Proc Classifications 10.1
Functional Definitions of Procs 10.3
History of 3.1
Intrinsic Commands 10.4
Introduction to 3.1
Obtaining System 3.3
Subprocesses 5, 5.2.2, 5.3
USH mode 5.2.1.2
VICAR Labels 4, 8.3.1, 8.3.3, 9.1
Binary Header 9.1
Binary Prefix 9.1
End-of-dataset Label 9.1
Examples 9.1, 9.2, 10.12
History 9.2
Structure 9.2
System 9.2
VICAR Libraries 5.1
LIBLST 5.1,
Search Hierarchy 5.1, 7.3.3, 7.4
SETLIB 5.1
SHOW 5.1,
VICAR User's Guide
Acquisition 2
Acronyms 1.3.2
Conventions 1.3.1
Online version - see the Preface
VIDS
Documentation 2
VRDI
Documentation 2
WIZARD

Defined 1.3.1

